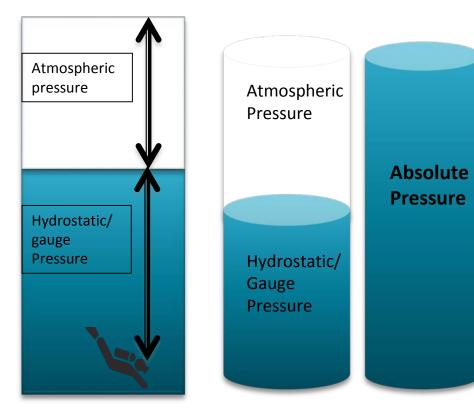
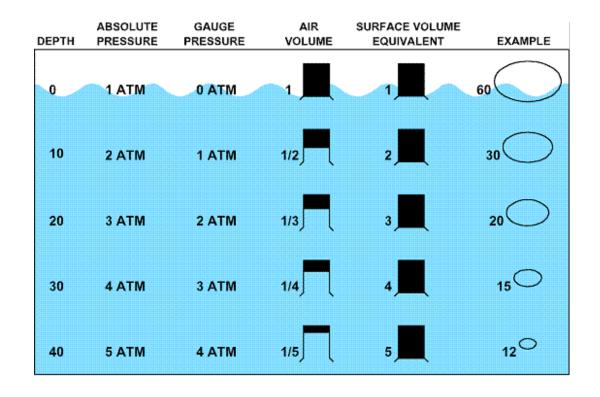
Dive Medicine Aide-Memoire


Lt(N) K Brett


Reviewed by LCol A Grodecki

Diving Physics

Physics

Air ~78% N₂, ~21% O₂, ~0.03% CO₂

Conversions

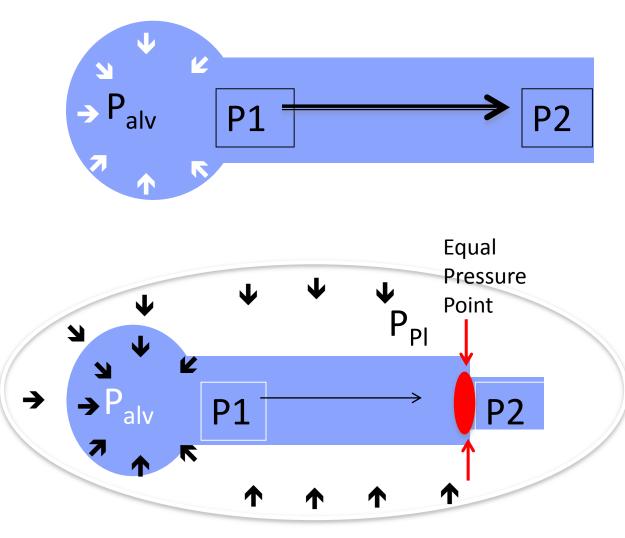
- Hydrostatic/ gauge pressure (P) = ~1 atm for every 10 msw/33fsw
 - Modification needed if diving at altitude
- Atmospheric P (1 atm at 0msw)
- Absolute P = gauge P + atmospheric P
- Water virtually incompressible density remains ~same regardless depth/pressure
 - Density salt water 1027 kg/m³
 - Density fresh water 1000kg/m³
 - Calculate depth from gauge pressure you divide press by 0.1027 (salt water) or 0.10000 (fresh water)

- 1 bar = 101 KPa = 0.987 atm = ~14.5 psi
- 10 msw = 1 bar = 0.987 atm
- 33.07 fsw = 1 atm = 1.013 bar
- Absolute P (ata)= gauge P +1 atm
- °F = (9/5 x °C) +32
- °C= 5/9 (°F − 32)
- °R (rankine) = °F + 460 **absolute
- K (Kelvin) = °C + 273 **absolute

Laws & Principles

- All calculations require absolute units (K, °R, ATA)
- Charles' Law $V_1/T_1 = V_2/T_2$
- Guy-Lussac's Law $P_1/T_1 = P_2/T_2$
- Boyle's Law $P_1V_1 = P_2V_2$
- General Gas Law $(P_1V_1)/T_1 = (P_2V_2)/T_2$
- Archimedes' Principle
 - Any object immersed in liquid is buoyed up by a force equal to weight of the fluid displaced by the object
- Daltons' Law $P_{(total)} = P_1 + P_2 + ... + P_n$
 - The total pressure exerted by a mixture of gases is the sum of the pressures that would be exerted by each gas if it alone were present and occupied the total volume

- Henry's Law:
 - The amount of gas that will dissolve in a liquid is almost directly proportional to the partial press of that gas, & inversely proportional to absolute temp
- Partial Pressure (pp) pressure contributed by a single gas in a mix
 - To determine the partial pressure of a gas at any depth, we multiply the press (ata) x % of that gas Henry's Law
 - Gas molecules enter liquid add to gas tension (=partial press gas in liquid)
- Pressure gradient = Δ between gas tension in the liquid and gas partial press outside liquid
 - High gradient (low tension high PP) = high rate absorption of gas into liquid


Physiologic Implications Underwater Breathing Apparatus

Physiologic Implications Underwater Breathing

- Increased CO₂ levels
 - CO₂ retention if breathing inadequate to eliminate CO₂ produced.
 - Common in all diving due to 个WOB
 - Immersion effects
 - Gas density
 - Equipment effects
 - Exacerbated by exercise/work, panic, hyperventilation, dynamic airway compression
- Gas Density
 - increased depth = increased density (Gas law) = decreased flow (Poiseuille's law) = increased WOB

- Immersion Effects
 - P Δ feet to chest ~120cm H₂O, negative static lung load dev when lungs deeper than reg/counterlung
 - Fluid shift to central circulation
 - ↑cardiac afterload, ↑blood to lungs = ↓lung compliance, ↓ VC, ↑ airway resistance, diuresis
- Equipment Effects
 - All underwater breathing equipment increases breathing resistance
 - i.e. Demand valve, dead space in helmet/face masks/hoses
 - Movement of CO_2 from blood to lungs based on gradient/press Δ
 - Rebreathers if inhaling Co₂ = smaller
 Δ = less CO₂ ventilated

Dynamic Airway Compression (DAC)

- Normal Expiration gas flows out along airway because P1 >P2
 - P1 -> P2 declines more quickly with dense gas
- At some point along the tube, airway P = intrapleural P (P_{pl}) = equal pressure point (EPP)
 - Beyond this point, P along airway is less than P_{pl} = airway compression
- Catch 22
 - Harder you try to exhale,
 - higher the P_{Pl} = shift EPP to the left
 - \uparrow WOB which \uparrow CO₂
- Distal movement of EPP
 - Increased a/w resistance (asthma, gas density), reduced lung elastic recoil, negative static lung load

Gas Issues in Diving

Gas Issues

• TOO MUCH

• O₂, CO₂, inert gas narcosis, High Pressure Neurological Syndrome

• TOO LITTLE

- Hypoxia, hyperventilation
- WRONG GAS
 - CO poisoning, contaminants

Oxygen Toxicity

- Toxic effects due to PPO₂ (not %)
- CNS main concern but pulm may become an issue with extended dive ops (serial bounce, sat)
- PPO₂ limits CF diving
 - 1.6 ATA routine
 - 1.8 ATA exceptional (requires CO sign-off)

Ocular OxTox

- Decreased peripheral vision ~2.5-3.0 hrs at 3.0 ATA
 - Central vision unaffected, usually resolved within 30-45mins after treatment stops
- Progressive myopia
 - Generally 2-4 weeks of treatment and usually completely reversed after ~3-4 weeks (sometimes up to 1 year)
 - DM, elderly more susceptible
 - Unclear whether hood/monoplace increase risk vs. facemask

CNS Ox Tox

- Vision changes (↓acuity, dazzle, lat movement, constricted fields)
- Ears (tinnitus, auditory hallucinations, music, bells, knocking)
- Nausea/vomiting
- Twitch (lips, cheek, eyelid, tremors...)
- Irritability, behaviour, mood changes (incl apprehension, apathy, euphoria)
- Dizzy
- Convulsions
 - Also pallor, sweaty, palpitations, brady, tachy, panting, grunting, unpleasant gustatory/ olfactory sensations, hiccups

- Risk Factors
 - Exercise
 - Hyper/hypothermia
 - Hypoventilation, hypercapnia
 - Immersion
 - Metabolic activity, blood flow to brain
 - Hypoglycemia (DM)
 - Seizure D?O, +/- meds that lower sx threshold
 - VitE deficiency
 - Pseudoephedrine, amphetamines, ASA, acetazolamide
 - Spherocytosis, hypercortisolism

CNS OxTox

- No consistent pre-convulsion warning sx
 - Often not preceded by other sx
- O₂ convulsions **not** inherently harmful
 - No pathologic changes in human brain, no evidence of clinical sequelae
 - No apparent predisposition to future sz disorder
 - Harm based on context (seizure underwater = drowning)
- Very high intra & inter-individual variation in susceptibility
 - ?increased risk with drugs that lower sz threshold (not much evidence)

- Tx
 - Remove O₂
 - Protect from injuries if seizing
 - Check DDx (don't forget hypoglycemia)
 - Keep patient off O₂ for 15 mins *after all sx are gone*
 - Ignore treatment time lost and resume table where last interrupted
 - Don't forget to compensate for extra time for chamber attendants
- Preventive Measures
 - Air breaks
 - Clinical HBOT setting (rarely used)
 - Glutathione
 - Lithium
 - GABA agonists

Pulmonary Oxygen Toxicity

- Cumulative dose = fx of exposure time, ATA, and FiO2
- Acute Δ with FiO2 > 0.8 ATA
- Chronic Δ with FiO2 > 0.5 ATA
- Typically insidious mild substernal irritation, chest tightness -> 个cough -> constant burning exacerbated by inspiration -> dyspnea (exertion or rest)
 - ~12-16 hrs @ 1 ATA, ~3-6 hrs @ 2.0 ATA
- CXR usually N, +/- patchy infiltrates
- Mechanical fx impaired earlier than gas exchange (CO diffusing capabilities)
 - No change FEV1
 - ↓FVC
 - 2%, asx, completely reversible over hrs
 - 10% = mild sx, reversible over several days
 - 20% = mod sx, probably reversible over weeks, acceptable for a TT
 - \downarrow Diffusion capacity, FEF 25-75, V/Q defect

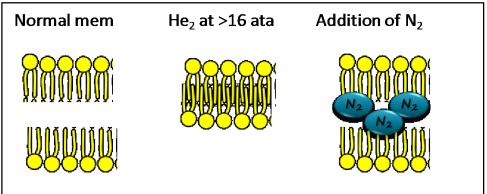
- Acute Exudative (reversible)
 - Interstitial and alveolar edema, hemorrhage, destruction of pulm capillary endothelium, loss of type I alveolar cells (surfactant), inflam. cell infiltrates
- Acute Proliferative (non-reversible)
 - Type II alveolar cells replace damaged type I (blood-air barrier thickens), fibroblast infiltration, increased alveolar-capillary distance, ↓alveolar air vol, ↑collagen content
- Chronic
 - Progressive pulmonary fibrosis, similar to ARDS
- Preventions:
 - Air breaks
 - Unit Pulmonary Toxicity Dose (UPTD)
 - 1 UPT = pulm poisoning produced by 100% O2 x 1 min at 1 ATA
 - HBOT Max 1440 UPTD/24hrs (TT6 = 750 UPTDs)

CO₂ Toxicity

- Inadequate ventilation
 - Helmet diving, hyperbaric chamber
 - Alveolar hypoventilation
- Higher inspired CO2 = failure of CO₂ scrubbers in rebreather systems
- CO₂ retention (increased WOB underwater)
 - Increased CO₂ levels unpredictable, even in normal healthy divers
- Inadequate pulmonary ventilation
 - Increased density of gas
 - Deliberate hypoventilation or 'skipbreathing' – NEVER skip breath, esp. at high PP

- S/Sx
 - H/A, flushing, sweating
 - Dizzy
 - Dyspnea
 - Decreased cognition, disorientation
 - LOC/convulsions
 - Makes everything else worse (NN, OxTox)
- Tx
 - End dive
 - Fresh air, +/- O₂

Nitrogen Narcosis "Rapture of the deep"


- Reversible depression of neuronal excitability due to inert gas
 - Potency Xe > Kr > Ar > N > H > Ne > He
 - Interfere with transmission of EP across synaptic gap
- Immediate onset at depth, stable after few mins at depth, rapid resolution upon ascent
 - Potentiated by ↑CO2 levels
 - No true acclimatization, divers may dev short term tolerance
- RFs
 - Depth, gas mix, anxiety, task loading, cold, fatigue, exercise, EtOH, sedatives, 个CO2

- S/Sx
 - ↓performance mental/manual work (higher fx affected most)
 - Dizzy, euphoria, uncontrolled laughter
 - Overconfidence, overly talkative
 - Memory loss/post-dive amnesia
 - Perceptual narrowing (fixation)
 - Impaired sensory functioning
 - LOC >100msw
- Prevention
 - Depth <30msw, plan dive ahead & practice tasks
 - If affected decrease depth
 - Heliox

High Pressure Neurological Syndrome (HPNS)

- General excitation of brain
 - Opposite to narcosis
- Occurs in very deep diving >16 ATA
 - Usually Heliox mixtures at this depth
- Affected by rate of compression
 - Rapid rate = increased severity at shallower depth
- S/Sx
 - Marked tremor hands/arms/whole body, dizzy, anorexia, nausea, vomiting
 - Fatigue, somnolence
 - Can progress to myoclonic jerks -> clonic seizures

- Prevention
 - Diver selection
 - ↓compression rate, long stages/holds (allow adaptation)
 - Use of N₂ (or other narcotic) in trimix

- Physical pressure compresses bilayer (He₂ lets you get to that pressure) -> increased brain excitation
- Addition of N₂ = swelling -> decrease brain excitation
- Trimix = balance between compression & swelling

Hypoxia

- Same sx as on the surface
- Important to know onset for rebreathers
 - Open circuit
 - Hypoxia at depth almost never O₂ issue, gen CO₂ issue
 - Hypoxia at surface almost always O₂ issue
 - Closed circuit
 - Hypoxia sensor failure
- Prevention
 - Maintain gear & checks
 - Don't run out of breathing gas

- Shallow-Water Blackout
 - Breath-hold diving
 - Remember CO₂ produces drive to breathe
 - Hyperventilation reduces CO₂ levels below normal levels
 - O₂ levels may fall to a level causing LOC before CO₂ increases to breakpoint trigger for breathing
 - LOC underwater is never a good thing...

CO Toxicity

- Typically contaminated air from improperly directed compression engine exhaust
- Pathophys
 - CO relative affinity for Hb 250x greater than O2
 - ↓O2 carrying capacity, ↑unbound Hb = left shift = ↓tissue/intracellular O2
 - Disturbs mitochondrial e- transport, 个NO radicals, lipid peroxidation in brain
 - Cerebral vessels dilate, ↑coronary blood flow with ↓central resp -> cerebral hypoxia & cardiac arrhythmias
 - Acute mortality often due to ventricular arrhythmias due to hypoxic stress, myocardial impairment

- S/Sx
 - Headache, N/V, dizzy, weakness, vision changes, disorientation, ↓LOC, auditory dysfunction, cardiac arrhythmias, skeletal muscle necrosis -> ARF, pulm edema
 - Concomitant smoke inhalation sx
 - Cherry red skin colour rare, very late
- CO best assessed by blood carboxyhemoglobin (COHb)
 - Mortality/morbidity not correlated with COHb level
 - Pulse oximetry overestimate arterial O2
- Tx
 - ABCs, preserve airway
 - Ventilation, oxygenation
 - HBOT hastens CO dissociation beyond rate achievable by surface 100% O2

Decompression Illness

DCI

- Decompression illness (DCI) includes DCS and AGE
- ~1-10/10,000 dives
 - Higher in cold water, deep; lower in recreational warm water diving (1-4/10k)
- Traditional/Golding Classification
 - Type I (MSK, skin, lymph, fatigue)
 - Type II (neuro, cardio-resp, ENT, shock)
 - AGE
- Descriptive/Francis Smith Class
 - Evolution (spontaneous recovery, static, relapsing)
 - Progressive (increasing #, severity of s/sx)
 - Organ System
 - Neuro, cardio-pulm, MSK, skin, lymph, ENT
 - Time of onset (before or after surfacing)
 - Gas burden
 - Low (conservative within NoD), Med (D Dive), High (violation dive table)
 - Evidence of barotrauma

- Diagnosis generally hx, estimation of likelihood
 - Sx depend on location of insult
 - <24 hrs possible, >24 hrs unlikely, >36 hrs very unlikely, >48 hrs almost impossible unless altitude change
 - There is no pathognomonic test for DCI
- Tx
 - 100% Surface O2
 - IVF
 - Evacuation considerations
 - Airway, foley, pressurized cabin or as low as possible
 - HBOT

DCS Pathophysiology

- Henry's Law amount of inert gas absorbed by blood/tissue increased at depth
- Boyle's Law $P_1V_1 = P_2V_2$
- Bubble effects
 - Intravascular embolism, vasospasm, ischemia, transbolism, venous stasis, hemorrhage, blood-bubble interactions, mechanical stripping of endothelial cells
 - Extravascular -tissue disruption, tearing, hemorrhage, localized "compartment syndrome" – ischemia, stasis
 - Typically peri-alveolar capillary network 'traps' venous gas – but can be overcome (# bubbles, repet diving)

- Inflammatory & thrombogenic processes
 - Association with oxidative stress, microparticles
 - Bubbles biologically active form plasma-protein coat activating WBC, plts, fibrin web
 - "Thick skin" stabilizes bubble, decreases diffusion of inert gas out of bubble
 - Recurrence of sx likely due to secondary rxn vice initial bubble

Cutaneous, PNS

- Cutaneous angio-lymphangiologic DCI
 - Erythema, lymphedema
 - Cutis Marmorata
 - Venous congestion, infl, WBC activation, and endothelial damage
 - Associated with pulmonary and neuro DCI, thus requires careful monitoring

Cutaneous diffusion

- 'Diver's Lice': erythematous rash, typically with dry chamber dives or dry suits
 - ?inert gas enters skin directly, causing dermal bubbles and histamine release on decompression
 - Benign, no RCC required
 - Tx if dx in doubt

- PNS
 - All that tingles is not the bends!!!
 - Don't forget about non-dysbaric neuropraxias: ulnar, median, inferior brachial plexus, lateral cutaneous femoral and sciatic
 - Tight wet suit, weight belts, heavy equipment, BCD straps, sitting on side of boat etc.

MSK

- Most common presentation of DCS
- "Bends" typically only affects long bones of appendicular skeleton (not axial skeleton)
 - Adult long bones contain fatty marrow cavity ?reservoir for inert gas
- Pain mechanisms
 - Intra-articular
 - "Niggles"/ marginal DCS if mild sx that begin to resolve 10min after onset
 - Peri-articular (within tendon, muscle); "niggles" if brief
 - Medullar/sinusoids gas expansion within medullary cavity, fatty marrow and bone sinusoids
 - Referred pain injury to nerve roots assoc with joint, generalized release of infl modulators

- MSK speculation
 - Unk if any long-term effects for #2-3 if no RCC (if this is DCS)

	Pain	Potential Cause
1. Localized sharp	Affected by movement	Tendon/muscle injury (this is what moves)
2. Localized sharp	Unaffected by movement "diver rubs at it"	Local infl; (?DCS)
3. Poorly localized, deep boring pain	Affected by movement	Intra-articular, joint capsule tension; (?DCS)
4. Poorly localized, deep boring pain	Unaffected by movement	Bone medulla injury (<mark>DCS!</mark>)

Spinal Cord DCS Pathophys

- Spinal cord white matter in a C-shaped area around the spinal cord grey matter
 - Watershed zone between ant and post spinal cord circulation – susceptible to both inert gas accumulation and bubble-related ischemia
 - Cervical and lumbar enlargements particularly vulnerable
- Presentation is likely combo of interacting compressive/ ischemic mechanisms
 - Gas embolism
 - But blood flow favours embolization to the brain, and experimental spinal cord embolism generally produces grey matter pathology vs. white matter
 - Venous infarction bubble accumulation in epidural venous plexus
 - Can't explain ultra-short-latency cases
 - Usually produces grey matter lesions, not white like DCI

- Autochthonous bubbles spontaneous bubble formation in spinal cord white matter
 - Direct axon destruction with 2° effects (hemm, infl, stretch/compress)
 - Explains rapid onset, lesions in white matter
 - But how are these small isolated lesions able to produce such significant sx?
- Hemorrhage and inflammation
 - Observed in same areas where autochthonous bubble injuries were seen
 - Could explain why some cases of rapid onset spinal cord DCS resistant to recompression

IE DCS Pathophys Theories

1. Counter diffusion

- Conditions where inert gas in middle ear differs from gas in the breathing mixture (gas switch)
 - -> Diffusion through round/oval window could result in accumulation of inert gas with bubbling
- Blood supply to inner ear isn't uniform (stria vascularis supplies endolymph directly, then diffuses to perilymph)
 - Endolymph could rapidly take up new inert gas before perilymph had time to eliminate former inert gas -> bubbles form in endolymph
- 2. Gas induced osmosis
 - Similar to #1, inert gas accumulation in endolymph induces osmotic fluid shift toward endolymph -> hydrops endolymphaticus (similar to Meniere's)

- 3. Explosive/hemorrhagic
 - Gas accumulation in temporal bone osteoclast pockets that explosively rupture into inner ear during decompression
 - Plausible for deep mixed diving, blow-up from saturation
- 4. Embolism
 - Inner ear blood supply is end-arterial, thus would be prone to embolic or vascular injury

AGE

• Subset of DCI

- ~1/5000 USN experimental dives
 - Low among mil working divers on standard tables, ~1/10k
- 2nd most common cause diving fatalities
 - Australian dive fatalities 1972-2005, AGE cause in 25% of cases (2nd most common)
- Mechanisms
 - PBT
 - Intracardiac shunt ("safe dives make bubbles")
 - Trans-pulmonary shunt
 - A-V or bronchopulmonary fistula (rare)
 - In-situ bubble formation (not likely)
 - 50% diving cases no identified cause, most neuropath info from iatrogenic CAGE
- DDx: Neuro DCS, CVA, carotid artery dissection, cardiac, other neuro process
- RFs same as POS

- S/Sx
 - Rapid onset <10 mins, rapid progression
 - Neuro sx occurring immediately after surfacing (esp. shallow, short dive) should be considered AGE until proven otherwise
 - +/- POS Sx
 - Neuro deficits based on bubble location (LOC, confusion, paresis, sensory loss, apnea, aphasia, visual loss (field >acuity), vertigo, ataxia, seizure, isolated personality or cognitive change etc.)
 - +/- neuropsychiatric, EEG changes
 - 5% dead on the spot –cardiac airlock
 - Systemic hypertension and bradycardia
 - Liebermeister's sign (sharply demarcated pallor on one half of tongue)
 - CK increased with peak 12hrs post onset
 - Correlates with severity, outcome (<1000 likely full resolution)
 - MR head: nothing -> focal or multifocal ischemia -> edema

AGE

• Tx - ABCs

- Supine, recovery position if LOC or airway not controlled
- 100% O2, euvolemia with IVF (RL)
- +/- ETT (low press/volume)
- Lidocaine (neuroprotective) 1mg/kg slow IV bolus, then 1-4mg/min (*controversial, may lower sz threshold)
- IV Benzo for seizures, agitation
- Chest tube if concurrent pneumo
- HBOT TT6 or Comex 30
 - ?Helium benefit after CVA (Comex 30 on 50/50)
 - Tx until plateau (h/a not indication for re-tx)
- Medevac ASAP pressurized aircraft to 1 ATA, or fly as low as safely possible

- Complications
 - Relapse seen in ~30% as late as 68hrs
 - Edema, re-embolization, ischemia reperfusion, endothelial damage,
 - Concurrent DCS can be resistant to Tx
 - Drowning
- Investigations
 - Carotid Doppler, contrast echo, CXR, CT chest, MRI brain (residual damage), PFTs
- Prognosis/RTD
 - Most have good outcome w/ resolution if prompt tx
 - R/O predisposing factors
 - ? Risk of recurrence if no RF identified
 - Unknown if 2nd occurrence means worse outcome than 1st
 - AUMB decision RTD
 - Any residual sx unfit dive
 - Asx after HBOT case-by case

Pulmonary Barotrauma

Pulmonary Overpressure Syndrome (POS)

• POS

- Pneumomediastinum, subQ emphysema
- Pneumothorax (rarely seen in diving)
- AGE
- Overexpansion of lungs (breathing compressed gas) & can't properly ventilate expanding gas volume with ↓ press
 - Boyle's law: Largest volume changes near surface, breathhold ascent from 4fsw sufficient
 - Air tracks along bronchi to outside the lung, or into adjacent blood vessels
 - Extrinsic: breath-holding on ascent panic, out of air, buddy breathe, laryngospasm, sub escape
 - Intrinsic obstruction or restrictive lung disease -> local air trapping, Δlung tissue compliance
- Most pathological studies indicate shear at terminal bronchioles and marginal alveoli rather than rupture of alveoli
- ?Blebs and bullae
 - COPDers with B&B don't have 个incidence of PBT during HBOT (BUT no immersion, slow ascent rates)
 - B&B found post PBT may be either cause or consequence

- ? Role of obstructive airways. Mixed evidence
 - FEV 1 has low correlation to PBT risk
 - MEF 25 has moderate correlation to PBT risk
 - FEV1/FVC does not correlate
 - Asthmatics don't bear a much greater risk for diving-related intrinsic PBT than non-asthmatics
 - 50% of PBT/AGE survivors, no abnormality of lung fx detected
- ? Role of compliance
 - Pathology more consistent with shear than rupture, implies regional differential compliance
 - FVC correlated with PBT risk
 - Chest binding (reducing relative regional difference in compliance) ψ risk for PBT
 - Higher incidence PBT while immersed vs RCC (pulm blood pooling with immersion reduces interstitial compliance)
 - Pathology weak correlation between shear site and location of pre-existing scars/fibrosis

POS

• S/Sx

- Asx or if sx, usually on ascent or shortly after surface – cough, hemoptysis, CP, SOB, resp distress, pleuritic/substernal CP
- +/- sx of AGE
- Pneumomediastinum decreased heart sounds, dysphonia (brassy, monotone), Hamman's sign, recurrent laryngeal paresis, pseudo-tamponade
- SubQ emphysema crepitations felt in soft tissues

• CXR

- Free gas at margin of heart/vessels, pseudopneumopericardium, subQ gas
- Pneumothorax
- Pleural effusion
- Intravascular gas with massive AGE
- Tx ABCs
 - 02
 - Needle deco/CT for tension pneumo (rare)
 - RCC only if AGE
 - Supportive SC/mediastinal emphysema
 - ER/Thoracic referral urgency based on sx

- Screening controversial
 - CXR low predictive power
 - CT many abnormalities (?clinical significance), expensive, ++radiation
 - Spiro poor correlation to PBT risk
 - FEF 25-75% abnormalities small airway Fx (ensure adequate curve before interpreting numbers)
 - MTC not adequate sens/spec
 - Asthma Exercise Challenge
 - 80% HHR x 8 mins with FEV1 at 15, 30, 60 mins post
 - FEV1 decrease by 15% or more is positive
 - Eucapnic voluntary hypercapnea, hypertonic (4.5% saline) and mannitol
- Disposition (case by case)
 - CDSM/AUMB based on cause, investigations
 - PFT, HRCT (insp, expiration)
 - 'Deserved' with normal f/u invs potential RTD
 - 'Undeserved' or persistent sx/pathology likely unfit diving

PBT of Descent (Lung Squeeze)

- Risk with deep breath hold diving
 - As descend, ambient pressure compresses lungs (Boyle's law, gas is compressible)
 - At surface, hold ~6L
 - At 6 ATA (50 msw) ~1L
 - Breath hold divers go much deeper than this! >150msw
 - Lungs begin to fill with fluid and blood, now more liquid and less compressible

Non-pulmonary Barotrauma

Non-pulmonary BT

• Sinus Squeeze

- 12% divers experience
- Air trapped in sinus (i.e. sinus passageway blocked) decreases in volume as you descend
- Can "suck" soft tissues into gas space -> blood vessels engorge and leak blood
- Blood will often drain during ascent
 - Air expands, open passageway
 - H/A commonly accompanies

• Sinus BT

- Air in sinuses that expands on ascent
- S/Sx
 - Pain, press, bloody nasal discharge, odontalgia

• Treatment is symptomatic

- Nasal, PO decongestants
- Abx if dev infection
- Refer if #

• RFs

 URTI, allergic rhino-sinusitis, acute or chronic infectious sinusitis, nasal polyps, mucosal retention cysts, deviated nasal septum, congenital osteo-meatal dystrophy, Wegener's, rhinitis medicamentosa

• Prevention

- Don't dive with URTI, allergies, nasal deformities (deviation, polyps)
- Caution med use while diving can wear off
- ENT referral PRN, eg if recurrent

Non-pulmonary BT

- Mask/Face Squeeze
 - Air in mask also follows Boyle's law
 - Need to add air to space during descent otherwise gas compressed and "sucks" facial soft tissues/eyes in
 - Tx largely symptomatic
 - Prevention ensure to equalize your mask during descent
- Suit Squeeze
 - Air in drysuit compresses against skin on descent, skin forced into folds
 - Seal around neck can constrict
 - Tx symptomatic (ensure DDx)
 - Prevention light garment under suit, ensure adequate air layer
- Ear Squeeze/BT
 - See ENT section

- Dental BT (rare)
 - Air trapped within tooth expands on ascent or air pocket distorted during descent
 - Decay, dental surgery, improper/loose fillings
 - Tx: Dental assessment, analgesia
 - Prevention
 - Dental hygiene, dental fillings replaced if loose, ?appropriate time between dental surgery & diving
- GI BT (rare)
 - Air expands/contracts in GI tract
 - Perf rare if occurs likely lesser gastric curvature with panic ascent
 - Prevention avoid swallowing gas (anxious, nausea, head down ascent with Valsalva, excess reg press)
 - If cramps on ascent, stop and remove gas

Non-Dysbaric Dive Injuries

Underwater Blast Injuries

- EOD, explosives in salvage, UW cutting/welding, thunderflashes, combat explosives
- UW blast injuries
 - <u>Primary</u> due to shock wave = damage to gas containing organs (GI, lung, ENT, CNS)
 - <u>Secondary</u> due to displaced debris
 - <u>Tertiary</u> due to collision with stationary objects
 - Misc. burns, radiation, etc.
 - Press wave travels 4x faster UW than in air
 - Typically no damage to non-gas containing organ unless impact/penetration wounds

- Tx
 - ABCs, ABCs, ABCs
 - O₂-lung damage may not be immediately apparent
 - HBOT only if signs of AGE, DCS
 - If require ventilation
 - Risk of AGE, pneumo
 - Judicious use of fluids
 - Avoid worsening pulmonary edema
 - Early use pressors vs IVF
 - NPO May not absorb from GI
 - Specialist consult as PRN

Heat-related Illnesses

- Heat cramps
 - Exertion, significant sweating, excess hypotonic fluid replacement -> salt depletion
 - Tx PO salt solution (1/4 -1/2 tsp salt in quart of water), rest in cool env
- Heat Edema
 - Minimal edema, esp. feet & ankles
 - Diuretic not indicated
 - Tx leg elevation +/- support stockings
- Heat Syncope
 - Generally elderly due to cutaneous vasodilation, pooling blood in lower limbs

- Heat Exhaustion (temp <40 °C)
 - Vague malaise, fatigue, headache, thirst, weakness, anxiety
 - Tachycardia, orthostatic hypotension, +/- dehydration
 - Tx
 - Cooling ice packs (axillae, groins, neck), skin wetting/fans
 - Fluids, oral salt solution, +/- IVF
- Heat Stroke (temp > 40 °C)
 - Mild to severe CNS dysfx (delirium, LOC, seizure), skin hot/dry
 - Tx
 - Cooling ice-water immersion, cold packs, skin wetting, fan, iced gastric lavage etc.
 - IVF (hypovolemic, rhambo -> ARF)
 - Lytes, glucose replacement PRN

Cold Water Immersion

- Thermal conductivity water >> air
 - Body cools ~4-5x faster in water
 - EtOH impairs thermal perception
- Stage I Initial immersion (0-3 mins)
 - Cold shock rxn= initial gasp, hypervent, intense vasoconstriction (due to rapid skin cooling)
- Stage II Short-term response (3-30mins)
 - Superficial nerves & muscles cool
 - Immediate chilling hands/feet = inability to complete survival actions, swimming failure
- Stage III Long-term immersion (>30mins) = hypothermia
 - Age, cold habituation delay onset shivering faster fall body temp
 - Mild (35°C), mod (32-35°C), severe (25-32°C), profound (<25°C)

- Stage IV post-immersion/ circumrescue collapse
 - ~15-20% immersion deaths during/immediately following rescue
 - Heart muscle cold, less efficient, increase viscosity blood, prone to arrhythmias
 - Rapid tissue warming may increase off-gassing before adequate periph blood flow restored, ?bubbles
 - During rescue maintain pt horizontal
 - Collapse worse if rescued vertically, increased time of immersion
 - Cephalic redistribution of blood, BP maintained due to hydrostatic pressure

Near-Drowning/Drowning

- Drowning ~100-150 scuba deaths per year
 - Entanglement, running out of air, cardiac events
 - Secondary to other injury, ?AGE/POS
- Major pathophys is hypoxemia
 - 10-15% do not aspirate water laryngospasm
 - V/Q mismatch
 - Fluid-filled alveoli perfused, not ventilated
 - Decreased ventilation -> increase PaCo₂, cardiovascular collapse
 - Dilute surfactant
 - Elevation diaphragm from gastric distention -> vomit & aspirate gastric contents

- Tx
 - Ventilation must be reestablished prior to developing end-organ injury from hypoxemia
 - ABCs, 100% O₂
 - +/- ETT, NG tube
 - Monitor serial Arterial Blood Gas
 - Antibiotics
 - Ocean water/pool generally not required unless dev fever, purulent excretions, new infiltrates on CXR
 - If aspirate known contaminated water, consider Abx
 - Ventilation based on clinical presentation
 - BiPAP, PEEP etc.

Immersion Effects

Effects of Immersion

- CV Effects of Immersion
 - Increased central volume (700 ml) hydrostatic P effect
 - Increased stroke volume
 - Dive reflex bradycardia, peripheral vasoconstriction
 - Increased pulmonary artery pressure
 - Increased pulmonary capillary pressure

- Pulmonary Effects of Immersion
 - Reduced vital capacity (5%)
 - Reduced compliance
 - Increased closing volumes functional gas trapping, increased FRC
 - Increased diffusion capacity
 - Relative V/Q mismatch apical vs basal
 - Active Na channel transport in alveolar epithelial cells impaired in cold -> reduced clearance alveolar fluid
 - Negative intra-alveolar pressures dense gas, turbulent flow, regulator

Immersion Pulmonary Edema

- Acute resp distress with pulm congestion, +/- hypoxia
 - No resolution on ascent (i.e. bad gas)
- S/Sx
 - Dyspnea, cough, +/- frothy or blood tinged sputum
 - Tachypnea, hypoxia
 - Rales ~25%, wheeze ~10%
 - Frequently become symptomatic during ascent or surface swim
- Diagnosis
 - CXR no findings, interstitial edema, diffuse alveolar densities
 - ?CT more sensitive but ?significant
 - ABG: avg Sat 88%, PPO2 66mmHG, eucapnia

- Tx
 - Generally resolves within few hours (5 mins - 25hrs)
 - 02
 - Resistant cases
 - +/- β-agonist inhalation,
 - Rapid diuretic (IV lasix 20-40mg)
 - +/- BiPAP
- Usual CAF workup
 - BP, ECG, cardiac enzymes
 - Echo
 - EST
 - PFTs

Immersion Pulmonary Edema

• Prognosis

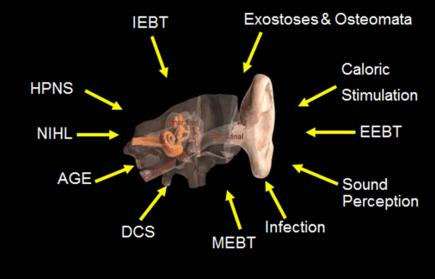
- Recurrence 15-30%, unpredictable
- CAF case by case RTD if all w/u negative

• Risk Factors

- Incidence, mortality likely under-reported
- Depth independent (2.9 msw), even surface only
- Exertion during dive freq absent
- Cold increases incidence but not necessary
- Over hydration pre-dive may contribute (association)
- ?tight wetsuit create neg intrathoracic press,
 ?NSAIDs contrary or weak evidence

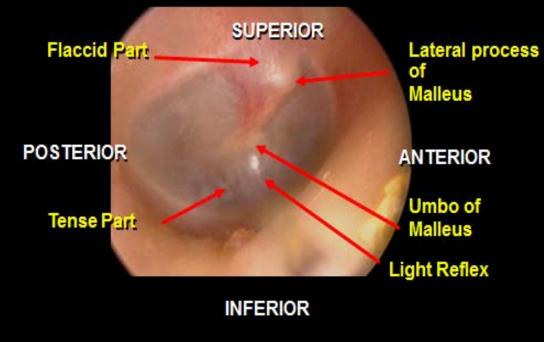
- Combination of immersion and:
 - Inspiratory restrictive load (high breathing resistance faulty regulator)
 - Negative pulm pressure
 - Fluid overload
 - High intensity exercise
 - LV diastolic dysfunction

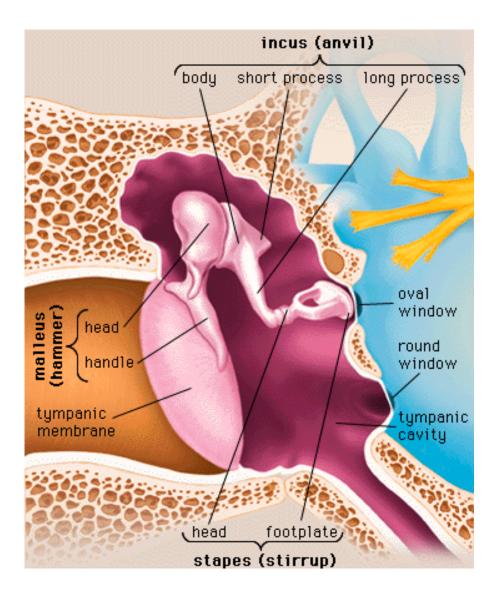
• Prevention


- Equipment checks
- Consider pre-dive hydration carefully
- Sildenafil decr MPAP/CVP, incr venous capacitance/pulm vasodilation BUT possible risk DCS
- Pre-immersion hyperbaric hyperoxia may protect in thermo-neutral water, not for cold water

Pulmonary Edema: Other Considerations

- Salt Water Aspiration Syndrome
 - Aspiration fine mist of seawater from leaking/flooded demand valve
 - May coexist with IPE
 - Tends to onset post-dive rather than on ascent
 - Often provoked by exercise, movement or cold exposure
 - Cough, fever, rigors, nausea, myalgia, SOB, mild leukocytosis
 - CXR patchy consolidation v. interstitial edema
 - Tx self-limiting, resolves without treatment within 2-24hrs
 - Rest, 100% O2


- Exercise on dry land
- Neurogenic Pulmonary Edema (elevated catecholamines -> peripheral vasoconstriction, increased pulm art P, pulm capillary leak)
- Hyperbaric hyperoxia in absence of immersion/exercise
- ~14% N. Americans have genetic β-2 adrenergic receptor polymorphisms predisposes to pulmonary edema with IVF


Systems Focus: ENT

Physiology

ANATOMY OF THE TYMPANIC MEMBRANE

Otitis Externa

• Prevention

- No Q-Tips
- Olive oil/2% acetic acid/domeboro/ tea tree oil

• Tx

- +/- gentle irrigation
- VoSol HC
- Cortisporin/Cipro HC/CiproDex/Garasone
- Wick (betnovate 0.05%, gentamicin sulfate 0.1%, tolnaftate 1%)

Fungal Otitis Externa

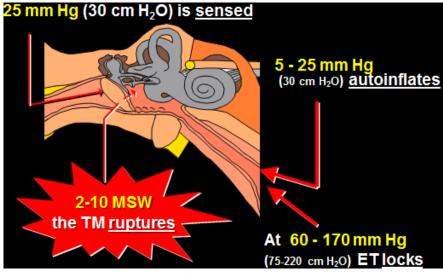
- Aspergillus/Candida
- Can cause malignant OE
- Tx
 - H₂O₂ irrigation, wick
 - Clotrimazole 1%/Locacorten-Vioform ottic gtts
 - Lamisil/Sporanox PO

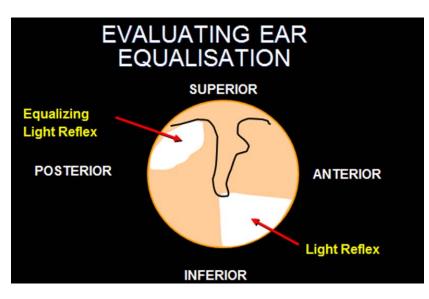
Malignant (necrotizing)

- Pseudomonas
- Osteomyelitis/erosion skull base, CN paresis
- Cipro IV 400mg q8h or 750mg PO BID
 - Levoflox if increase resistance to Cipro

Barotitis Externa

- Canal occluded
 - Hood, cerumen, oxostoses
- Doc's ProPlugs
 - Blocks water from entering ears in <20 fsw
 - Vented plug reduces abrupt press changes, ?easier equalization




Exostoses & Osteoma

- Periosteal rxn to cold water
 - "Surfer's ear"
 - Benign bony neoplasms
 - Typically single osteoma, multiple exostoses
- Occlusion -> hearing loss, infection, difficulties equalizing
- Surgical excision has high rate of associated HL & recurrence

Equalization

- Equalization
 - First equalization press felt at ~30cm
 - ET collapses if not equalized by 1.5msw
 - TM rupture if not equalized by ~10msw
- General Principles
 - Start early, blow gently
 - Don't smoke, avoid agents causing vasomotor rhinitis (PDE -5)
 - Consider polyposis/deviated septum if persistent probs
 - Don't dive when congested
 - Decongestants may allow descent and become ineffective for ascent
 - Don't use if:
 - Unable to equalize without them
 - New diver
 - >4-5d continuously
 - CI present (anxiety, HTN...)
 - \uparrow pO2 / \uparrow pN2 (deep / mixed gas)

Equalization Techniques

- Beance Tubaire Voluntaire (BTV)
 - Voluntarily open ET by "twitching" throat
 - Tensore veli palatini muscle
 - 30% pop can perform consistently
- Swallow/yawn
- Valsalva
 - Mod forceful attempted exhalation against closed airway
 - Never on ascent, never >5s
- Toynbee
 - Pinch nose & swallow
 - Small pressure diff, safe on ascent

- Frenzel
 - Closed glottis, move the tongue backwards quickly and forcefully against soft palate
 - Pinch nose for better effect
 - Gentle, safe for ascent
- Edmonds
 - Jut jaw forward
 - Combine with other techniques
- Lowry
 - Pinch nose, gentle blow against blocked nose & swallow
 - Difficult to perform
- Head tilt (bad ear up)
 - Combine with other techniques

MEBT

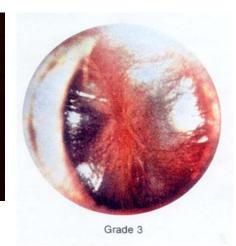
• TEED 0

- Sx of fullness/pressure with no otoscopic findings
- Resolves in 2-24hrs
- No Tx required
- +/- decongestants

- Teed 1
 - Pressure, typically no pain
 - Erythema, retraction of TM
 - Resolves 24-48hrs
 - +/- decongestants

MEBT

• Teed 2


- Pressure > pain
- Mild hemorrhage within TM
- Erythema extending to umbo
- Resolves 48-72hrs
- Decongestants recommended

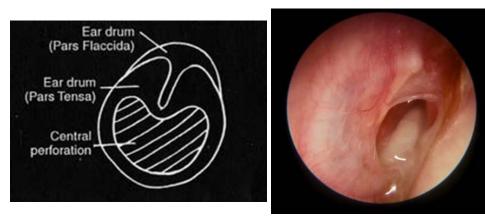
• Teed 3

- Pain & pressure
- More extensive hemorrhage within TM
- Resolves 4-5 days
- Decongestants recommended

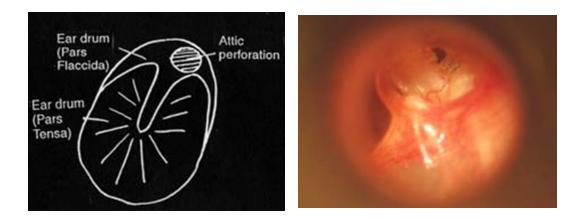
MEBT

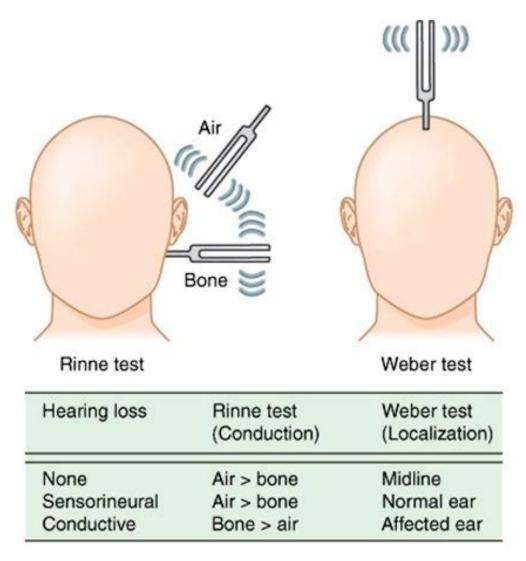
• Teed 4

- Prominent pain
- Blood behind TM, TM bulge
- Resolves 5-14d
- Decongestants recommended
- +/- Abx if secondary infection
- Consider myringotomy if not resolved at 7d

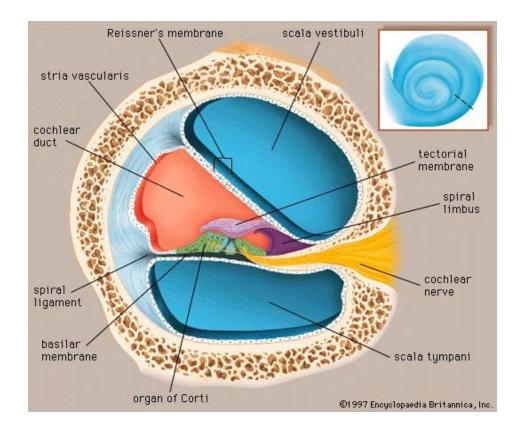

• Teed 5

- TM rupture
- Often initial relief of pain, resumes several hrs later
- +/- acute dizzy/vertigo
- Usually diminished hearing
- Avoid diving until TM healed (2-6 weeks)
- Abx drops (Cipro, Floxin) vs PO vs observation
- ?serial audiograms
- ENT referral if fails to heal
 - 90% heal within 90d




TM Perforation

• Central perf ='good' perf



• Attic Perf = 'bad' perf

IEBT

- May present
 - At time of forced equalization
 - At depth or immediately post dive with exertion (lift gear)
 - During otherwise normal ascent
 - Days later (usually hx of strain)
- Pathophys theories (likely combo)
 - Perilymphatic fistula (explosive or implosive force on windows 2° to press wave generated by TM or CSF)
 - Intralabyrinthine membrane tear
 - IE hemorrhage & gas
- RFs
 - URI or active allergy, hx of difficulty equalizing or poor equalizing technique (too late, too hard)
 - Forced Valsalva on ascent = sudden equal & implosion of stapes -> round window explosion
 - Wave trauma
 - Removing wetsuit hood
 - Heavy lifting (during, post dive)
 - Enlarged aqueducts (bigger wave)
 - Weakness of annular ligament of stapes

IEBT

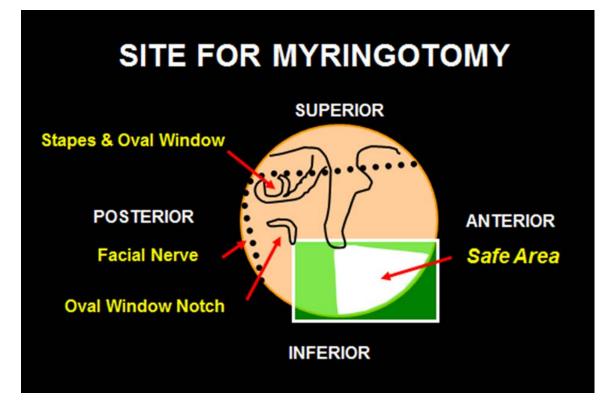
• S/Sx

- Constant disequilibrium, loss of balance, ataxia, positional vertigo, nystagmus, N/V
- Subjective ear fullness, high pitched tinnitus
- Hearing loss of various degrees (progressive, fluctuating or positional)
- Divers tend to have vertigo > SNHL compared to other causes IEBT
- Acoustiphobia
- Initial Exam
 - Otoscopy: N, +/- MEBT
 - Neuro exam
 - Hennebert (cough, sneeze, Valsalva) & Tullio (noise)
 - Serial audiometry
 - Gen global (conductive) or HF SN loss
 - Positional hearing gain of >10dB when supine with affected ear turned up
 - Special Investigations
 - VNG/VEMP may show vestibular dysfx
 - ABR differentiates central from peripheral
 - HRCT of temporal bones consider for divers without other defined RFs

- Tx involve ENT!
 - Bed rest with head elevated 30° until 7days post plateau of sx (~1-2 weeks)
 - Avoid cough, sneeze, Valsalva, strain at stool, sex, air travel, loud noises
 - Anti-nauseants, decongestants, sedative, laxatives OK
 - Steroids no evidence for IEBT, but make sure to consider SSNHL when HL is the only s/sx
 - NSAIDS CONTRAINDICATED
- Surgery tympanostomy and window graft
 - Severe sx (repair within 48hrs), no improvement @ 7-10d, serial audiometry shows deterioration, co-existing TM rupture
 - ~90% successful vestibular sx, improve vertigo & tinnitus >HL (10% recurrence post surgery)
- RTD may be ok CAF case-by-case
 - No non-compensated vestibular sx
 - HL stable, narrow, doesn't affect speech band
 - No anatomical risk factors, no issues equalizing
 - 6-12 weeks post injury (min no diving x 6 weeks post sx resolution or sx plateau)

IE DCS

- Typically deep and deco dives, deco violation, mixed gas
- Pathophys theories:
 - Bubbles in osteoclasts rupture bone lining otic spaces
 - Inert gas into perilymph from both blood and diffusion from ME via windows = supersaturation
 - Vascular emboli
 - Autochtonous bubbles arise in organs of inner ear
 - **Counterdiffusion -> total inert gas supersaturation
 - Gas switch from He to air N2 diffuses in vascular space from blood, He from ME


- S/Sx
 - Usual onset near surface, on deco stop, or v. shortly after surfacing
 - Vertigo & SNHL > tinnitus
 - N/V, staggers, nystagmus
 - +/- presence of other DCS sx (<50%)
 - Usually MEBT absent
 - Neg Dix-Hall-Pike, Henneberts, Tullio
- Tx
 - Rxn reasonably well to early RCC (TT6)
 - High rate of residual sx if Tx delayed
- If unsure IE DCS vs. IEBT vs both:
 - Myringotomy then RCC, slow ascent
 - Some evidence ok to compress without myringotomy if no prob equalizing

IEBT vs. IEDCS

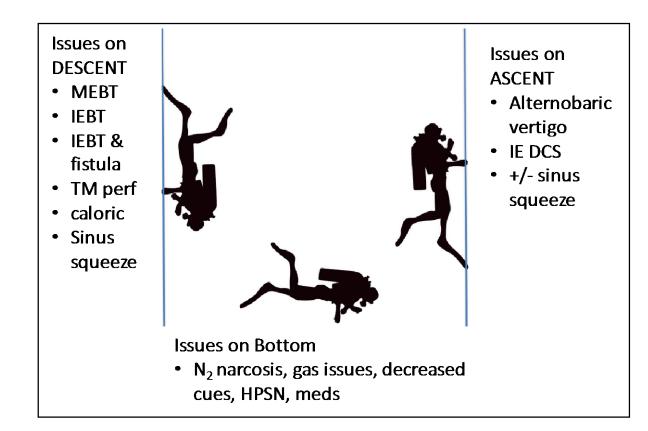
IEBT	IE DCS
More common	More rare
Typically during descent (+/- delay)	Typically ascent (+/- delay)
Hx of trouble equalizing, shallow dive, pain +/- HL, tinnitus, N/V	Hx – painless, no issues equalizing, typically deep/mixed gas (Heliox) dive +/- HL, tinnitus, N/V
Signs of MEBT, abnormal TM/perf Hennebert/Tullio	No external signs
Tx -No RCC -Head elevated, avoid ↑CSF, steroids	Tx -Urgent RCC -?steroids

- Delay situation = Valsalva after surfacing (ie. carrying tanks, lifting weights)
- When in doubt myringotomy & recompress

Myringotomy

- Myringotomy
 - Don't do it for the first time on your own, with a diver requiring immediate RCC
 - Procedural otoscope, 22G spinal needle
 - Anesthesia
 - 10 drops of 8% tetracaine base in 70% isopropyl alcohol applied to TM for 15 mins or 1cc of 5% EMLA applied to TM for 60 mins
 - Then dab incision site with 20-25% phenol

Alternobaric Vertigo


- Up to 25% divers, females 4x> males
- Due to press diff between two ME spaces
 - Δ0.6msw sufficient
- Rotational vertigo, nausea, nystagmus
 - Spinning toward side with related ETD dysfx
 - Resolves in mins(usually) to hours (v. unusual)
 - No HL or tinnitus
- Prevention:
 - Don't dive with sticky ears
 - Descend little bit until sx resolve then ascend slowly
 - Toynbee or Frenzel, NOT Valsalva
- Recurrence may be indication to discontinue diving case-based

Transient Caloric Stim

- Unequal vestibular caloric stimulation
 - Cold water enters one ear
 - Esp. if horizontal canal is in vertical position – supine with head elevated 30° /prone head depressed 30°
 - Can also occur if TM perf with MEBT
- Common RFs
 - Obstruction one canal (cerumen, FB, exostoses, OE, ear plus, diving hoods)
 - TM perf

"Dizzy" Diver DDx

- Disorientation
 - Impaired vision/proprioception, N2 narcosis, hyper/hypocapnia, hyper/hypoxia, gas contaminants (CO), HPNS
- Diving Causes Vertigo
 - Caloric (poor fitting hood, unilat canal obstruction, TM perf)
 - Positional (prone with head down)
 - Pressure Δ (ABV)
 - MEBT, IEBT, IEDCS
 - HPNS
- Non-Diving Causes
 - BPV, Meniere's, vestibular neuronitis, labrynthitis
 - Acoustic neuroma, MS, migraine
 - AOM
 - Motion sickness
 - Meds
 - Factitious

Facial Baroparesis

- Facial n. runs through facial canal along walls of middle ear cavities
 - Bony canal separates n. from middle ear space
- ~50% of people have "dehiscences" where nerve is covered by soft tissue/mucosa rather than bone
 - PΔ of only 0.8msw can cause relative ischemia of n.
 - Compression lasting >3.5 hrs can lead to permanent damage
- S/Sx
 - Setting of difficult equalization
 - LMB facial palsy, always unilateral
 - Onset shortly after surfacing
 - s/sx of MEBT usually evident
 - +/- coexist with IEBT

- Tx
 - 100% O2
 - Toynbee or Frenzel, no Valsalva
 - Decongestants
 - Dive (or RCC) to 1-2msw on O₂, slow ascent
 - Some authorities opine that HBOT at >10msw may be detrimental
 - Myringotomy rarely if ever required
 - No evidence to support corticosteroid
 - Usually resolves within 1-2 hrs after equalization (unless compression >3,5hrs)
- DDx
 - DCS provocative profile, no signs of MEBT, +/- other signs of DCS
 - Never reported as isolated DCS finding
 - CAGE/Stroke UMN vs LMB
 - Able to frown and close eye normally = UMN

Systems Focus: Cardiology

CVS & Diving

- **↑**cardiac demand
 - Heat generation, exercise, vascular redistribution due to immersion
- Cold/stress can induce coronary spasm
- CVS D/O in diving:
 - Sudden death underwater usually due to CVD, arrhythmia
 - Acute MI
 - Stroke
 - Syncope
 - Arrhythmias
 - Pulmonary edema
 - Paroxysmal dyspnea
 - Vascular rupture/occlusion
 - Gas embolism

- CAF RF Screening
 - Hx CVD, smoker, DM, lipids, FHx, HTN, exercise tolerance
 - Anthropomorphics
 - Labs lipids, fasting gluc, A1C > FRS
 - ECG q4yrs to 40, then q2yrs >40 y.o.
 - +/- EST, stress echo, nuclear perfusion, CT Coronary Ca if indicated
- Why screen Asx?
 - Most ACS due to plaque rupture, often without flow limitation pre-ACS event
 - Up to 50% initial presentation CVD is sudden cardiac death

CHD

- Septal defects
 - VSD most common upper septum
 - Small deficits gen no significant R to L shunt (unlikely to 个risk AGE)
- Aortic stenosis
 - Exercise syncope, sudden death
- Patent ductus arteriosus
 - HF if severe
- Cardiomyopathy
 - Hypertrophic often asx, may hear murmur on exam if valve abN
 - Dilated \downarrow LV fx may = exercise intolerance
 - * Any FHx of sudden death needs investigation to r/o cardiomyopathy!
 - Cl's to diving
 - AbN LV Fx EF <50% (risk arrhythmia)
 - Hx ICD, arrhythmias, syncope
 - Hx of HF (lose cardiac reserve to prevent syncope)

- PFO & Diving
 - Controversial- significant opinion (based on epi, animal models, path exam, pathophys reasoning) that shunt likely does not contribute to isolated spinal DCS
 - Relative risk DCS in significant shunt vs. no shunt ~5-25
 - Includes incidence of isolated spinal DCS, thus likely overestimate shunt-attributable risk
 - Consider underlying condition
 - CAF Screening CDs, unexplained DCS/AGE hit
 - Echo with bubble contrast & Valsalva

Valvular Disease

- Stenotic valves
 - \downarrow exercise tolerance (worse with immersion)
 - Lead to circulatory obstruction
- Regurgitant valves
 - Tolerated if mild
 - HF, pulm congestion if severe -> 个dyspnea (exercise, immersion)
- Volume overload -> hypertrophy
 - 个muscle mass demands requires 个blood flow (risk underperfusion of endocardium)
- Bicuspid aorta (*requires cardiology W/U)
 - Assoc with abnormal coronary arteries, aortic root dilation, PDA, Turner syndrome, aortic stenosis, aortic insufficiency
- Aortic stenosis exercise syncope, sudden death
 - Low risk if no LVH on ECG, HF, arrhythmias, syncope or angina

- Aortic insufficiency HF if severe
- Mitral stenosis exercise induced pulmonary edema
- Mitral insufficiency HF if severe
- Mitral prolapse +/- arrhythmia
 - Assoc with palpitations, tachy, extra beats, CP, regurg
- Pulmonic stenosis reduced exercise tolerance if severe
- Tricuspid stenosis reduced exercise tolerance if severe
- Prosthetic valves
 - What is fx status
 - ?anticoagulation required (increase hemorr risk in BT)
 - Likely low stress warm water diving only

Arrhythmias

• Supraventricular

- Episodic SVT, Afib can be N variant in young population
- R/O Mitral sten, TSH, HTN, nicotine, stress, EtOH, caffeine, supplements etc.
 - Gen ok to dive if no organic heart disease, resolves with stim remove
 - CDSM review if requires BB/CCB
- Ventricular
 - PVC may be N variant assess with exercise
 - No go diving if multifocal, R-on-T, freq coupling, ICD, LV dysfx (increase risk sudden death)

- Long-QT syndrome
 - QT > 440 msec
 - Assoc with sudden death/VF, syncope
 - Ppt by stress, exercise, lyte abN, drugs, meds etc.
 - Increase risk combo of exercise & immersion
 - Unfit dive
- Increased vagal tone
 - Bradycardia may be N variant in well conditioned applicants
 - Fit dive if asx
 - If palpitations (Afib), severe brady while diving – can increase risk syncope

Conduction Abnormalities

- Often underlying cardiac disease
- 1° AV
 - May be due to excess vagal tone
 - Asx generally ok
- Fixed 2° AV block
 - Often lead to complete block = CI
- LBBB
 - Often due to cardiomyopathy or coronary dz
 - Requires workup

- RBBB
 - Incomplete
 - If stable, usually N variant, benign
 - Complete
 - May be N variant or congenital HD
 - Requires workup to r/o anatomic cardiac abnormality
- Pacemaker
 - If no other heart disease, pacemaker tested to pressure and good exercise tolerance
 - May be ok for sport diving
 - Unfit CF diving
 - ICD unfit diving

Conduction Abnormalities

• Brugada Syndrome

- Mutation Na channel
- Type 1 ST elevation >2mm in >1 of V1-V3 followed by a negative T Wave
- Type 2 >2mm saddleback shaped ST elevation
- Type 3 morphology of Type1/2 but <2mm
- Accompanied by documented VF/VT, FHx of sudden cardiac death <45, similar ECG in family mbrs, syncope, nocturnal agonal respiration, inducibility of VT with electrical stimulation
- Tx = ICD, CI to diving

- Pre-excitation syndromes
 - Short PR not in itself CI
 - Asx, low risk arrhythmia may be ok sport diving
 - Recurrent paroxysmal or exerciseinduced tachy requires w/u
 - WPW
 - Risk exercise induced tachy, palpitations, SOB, syncope, sudden cardiac death
 - If successful ablation ok to dive
 - If sx Unfit Diving

Long-term Effects of Diving

Noise-Induced Hearing Loss

- Risk Factors (RF)
 - Noise in environment topside
 - Ship/boat noise, equipment/tools
 - Gas into chamber
 - Noise in environment underwater
 - No hearing protection
 - Helmet, reg, ship/boat noise, tools, underwater explosions
 - Barotrauma
 - Inner ear DCS
- \downarrow Sound localization under water
 - ⁺ sound velocity in water vs air = reaches both ears at same time

- CAF screening
 - Audiogram qYear & on clinical indication
 - Occupational med (effect of diving on person) – audiogram
 - Fitness to dive considerations (whisper test, word discrimination, audiology)
- New studies show no difference between divers and those exposed to similar levels of surface noise

DON

- Type of avascular necrosis due to hyperbaric exposures; in long bones with fatty marrow
 - Relatively ↓ blood flow = prolonged washout
 - N₂ is 5x more soluble in marrow fat than in blood
- Location: prox humerus, prox/distal femur, prox tibia
 - "wet" (divers) femur, shoulders, rarely hip
 - "dry" (caisson) hip most common
- Juxta-articular (A) or shaft (B) lesions
 - A lesions often become sx pain, $\downarrow ROM$
 - B lesions often remain asx
- RF
 - Depth exposures >30msw, or >4hrs at <30msw, hx of DCS (any depth), significant omitted deco
 - Submariner escape DON risk after single provocative deco exposure even if no DCS
 - >40, obesity, EtOH, fatty liver, dyslipidemia
 - Hx of DON

- Dx based on imaging studies
 - Long-Bone Survey (LBS)
 - B/L upper humeri (including rotational view of shoulder), AP & lat knees (upper tibia & lower femur) & b/l hip
 - Xray changes may not be observed for months/years after lesions devo
 - MRI preferred more sensitive & specific
 - Able to detect DON as early as 2 weeks post onset, and by 2 months virtually all lesions are demonstrable
 - Bone scan
 - High sens but low specificity, not diagnostic
- Prevention
 - Timely Tx of DCS with HBOT likely to reduce incidence of DON
 - Avoid RFs

DON Classification

<u>UK MRC</u>

- Juxta-articular A Lesions:
 - A1 Dense areas with intact articular cortex
 - A2 Spherical opacities
 - A3 Linear opacities
 - A4 Structural failures: translucent cortical bands, collapse of articular cortex, sequestration of cortex
 - A5 Secondary degenerative arthritis
- Shaft B Lesions:
 - B1 Dense areas
 - B2 Irregular calcified areas
 - B3 Translucent and cystic areas

- Ficat 0
 - Ischemia, intravascular coag
 - Asx, no radiographic changes
- Ficat 1
 - Dead bone without repair, asx
 - Xray N, MR shows marrow edema by ~ 4weeks
- Ficat 2
 - Dead bone with repair, no collapse, asx until late
 - XR: sclerosis with irreg margins, spherical opaque areas ("snowcap") and linear opacities
 - MRI: rings of low intensity surrounding necrotic center
- Ficat 3
 - Dead bone with repair & collapse
 - Sx pain with joint motion or weight-bearing
 - Xray: subchondral # radiolucent "crescent" line
 - MRI: necrotic centre, collapse of articular surface
- Ficat 4
 - Secondary degenerative arthropathy
 - May progress to complete destruction of joint

DON

- Screening
 - ALL divers complete DON questionnaire @ PHA
 - LBS only if at risk
 - Student divers
 - DWD candidates LBS at end of course
 - SWD only if Q shows 个risk = LBS within 1 month completing course
 - Divers with ongoing exposure to DON RFs (all DWD, SWD with increased risk) = LBS q5yrs
 - Any diver with DCS, significant violation deco or sub escape = LBS within one week of event, followed by MR (hips, knees, shoulders) @ 2 months post-event
 - All DWD, and any SWD who have required LBS = LBS at termination of diving career

- Management
 - All DCS, significant omitted-D, sub escape, or DON lesions require CDSM review
 - If ID DON R/O lesions at other sites
 - Juxta-articular A lesion
 - Shall be further characterized by MRI, staged
 - MRI of b/l shoulders, hip and knees
 - Followed by XRq6 months x 2 years, then annually until no further interval change
 - Referred to ortho
 - Declared "unfit CF diving or hyperbaric env"
 - Strongly advised to d/c civi diving >30msw, avoid load-bearing activities on involved joint
 - Shaft lesion
 - MR of b/l shoulders, hip and knees
 - LBS q5years until end of diving career, exit LBS
 - F/U required if dev sx
 - May be able to continue diving as per their quals vs. <30msw requires CDSM review

Aquatic Hazards

Hazard Categories

- Bites
- Barbs and Venoms
- Toxins
- Infectious agents
- Contamination

- Biological contaminants
- Chemical contaminants
- Radiological contaminants

Coelenterates (Jellyfish, sea anemones, fire coral...)

- Nematocysts
 - Vinegar \downarrow nematocyst discharge
- Box jellyfish/sea wasps
 - Multiple interlacing whiplash lines in beaded/ladder pattern -> wheal -> necrosis/ulceration ~7-10d
 - Excruciating pain
 - Death can be within 10mins, likely survival after 1st hr
 - HTN, then hypo/hypertensive oscillations, VF, resp distress, apnea, edema, cyanosis, paralysis
 - Tx
 - Vinegar, remove tentacles asap
 - IV morphine, IV steroids, anxiolytics, antivenom

- Irukandji syndrome
 - Can follow negligible sting from variety of jellyfish
 - Stinging -> papules, dyshidrotic, severe abdo pain, muscle cramps, hypertonicity, 个HR, 个BP, resp distress
- Sea Bather's eruptions
 - Thimble jellyfish larvae "sea lice" when nematocysts trapped under bathing suit/wetsuit discharge
 - Painful, erythematous, pruritic rash under dive suit
 - If freq exposure, can dev allergies to toxin
 - Tx = topical steroids, avoid trigger

Stings/Spines/Bites

- General Tx: immerse in hot water
 - Up to 45°C, including N skin (as control)
- Stingray
 - Spine physical damage, envenomation
 - Tx
 - Supine, elevate limb, wash away venom
 - Gently remove spine
 - Hot water bath
 - Inject local anesthetic into wound
 - Monitor for 2° complications
- Sea Urchins
 - Spine causes physical damage, Ach-like venom
 - Tx
 - Remove spines vertically
 - Hot water bath
 - Local anaesthetic

- Stonefish
 - Myotoxin blocks conduction skeletal/ cardiac/involuntary muscles, releases Ach
 - Immediate excruciating pain, edema, swelling, hot with numb centre & extremely tender surrounding
 - Cardiorespiratory collapse
 - Tx
 - Elevation, local anaesthetic, hot water bath
 - Antivenom if persistent pain
 - Debride necrotic tissue
- Sea Snake
 - 4 bite marks, venom blocks Ach
 - Euphoria, restless, thirst, dry throat, N/V, myalgias -> weakness -> paralysis (similar to Guillain-Barre), myoglobinuria
 - Tx
 - Pressure immobilization, antivenom (prophylactic epi/antihistamine), +/- ARF

Medical Exam for Divers

Diver PHA

- Purpose
 - Fit to dive, fit to work, med surveillance, assess impairment
- CAF SWD PHA (CFHS Instruction 4000-04)
 - Initial
 - Type I P1, P2, 2452, 2552, DON screen, labs
 - Type II P1, questionnaire review
 - P1 anthropomorphics, vision, audio, 2452
 - P2 full history and physical
- Initial Investigations
 - Blood CBC, 'lytes, cr, liver enzymes (AST, ALT, GGT, Alk Phos), lipids, FBS q2 years
 - Urine dip and micro
 - CXR PA insp/expiration, lat (3 views) q5 years
 - EKG q4 yrs to 40yo, then q2 yrs
 - Spirometry screen
 - DON screening annual Q's; LBS if at-risk
 - CV risk assessment q4 to 40 then q2

- Physical Exam Highlights
 - HEENT TM mobile with Valsalva, TM changes, TMJ ROM/crepitus
 - CVS
 - RESP
 - GI scars, hernias, masses
 - MSK document well any signs/symptoms, especially in the shoulders, elbows, hips and knees
 - Neuro gait, cognition, CN, pronator drift, Romberg, sharpened Romberg, bulk/tone/power/sensory/DTR, peripheral vs.. dermatome nerve deficits, +/- SCAT

Diver ROS

- 1. Asthma
 - Asthma after age 12, wheeze, SOB, ILD or COPD
 - Childhood Hx, ER presentations, hospitalizations
 - EIA, respiratory cold tolerance, bronchitis, pneumonia, cough (nocturnal, post URTI)
 - Puffer use
 - No go asthma = requires ongoing use of rescue inhalers, induced by cold/exercise/anxiety or exposure to airborne particulate/chemical/petroleum distillates found in the dive/sub atmosphere
- 2. Pneumothorax
 - Hx of spontaneous or traumatic, chest tube
- 3. Neuro
 - Seizure/epilepsy
 - Blackout/LOC
 - Migraines with deficits/impact on fx
- 4. MH conditions
 - Claustrophobia, anxiety, PTSD, phobias, substances (CAGE positive – context and consequences)

- 5. Significant Head trauma
 - TBI/concussion/LOC >2 mins, skull #, <u>any</u> ICH, post-traumatic amnesia >30 mins, focal neuro sx, post concussive epilepsy or post concussive sx lasting >24 hrs
 - For concussion/head injury
 - Total # of concussion or head injuries
 - Date last HI, interval between concussions/HIs
 - Change in threshold of trauma required to induce concussion/HI sx
 - Previous assessment by neurologist/specialist
 - Previous imaging results
- 6. ENT
 - Sinus problems, nasal polyps, deviated nasal septum, sinusitis
 - ETD problems clearing ears under pressure, flying
 - Chronic OM/OE, TM perforation
 - Vertigo, Meniere's
- 7. Hx of DI (DCS or AGE), DON, barotraumas

Drugs & Diving

Considerations

• Considerations:

- Underlying disorder
- Is drug inherently safe for diving?
- What type of diving planned?
 - Will performance be impaired unsuccessful mission
 - Proximity to medical care
- Incapacitation diver now a threat to themselves or safety to others
- Change in drug's efficacy/safety profile due to hyperbaric env

- "Bad" Drugs
 - Affect alert/LOC/cognitive fx, exercise tolerance, change sz threshold
 - I.e. psychotropics, sedatives, BB etc.
- "Bad" Diseases
 - Affect alert/LOC
 - ↓exercise tolerance/general fx, ↓press equalization, ↑risk DCS
 - I.e. psychiatric, neuro, cardiac, resp, MSK, metabolic, ENT considerations
- "Bad" Dives

Initial Approach to Dive Injury

1st Principles

• DCI

- Trapped gas -> POS, AGE
- Evolved gas -> DCS
- Not all diving casualties are dysbaric
 - Thermal (hyper/hypothermia)
 - Near drowning, IPE
 - Environment (blast injuries, tools, mechanical dangers, marine life)
 - Previous med conditions (MI, Sz)
- Not all dysbaric casualties have DCS
 - POS, AGE
 - Other barotraumas

- Dead/VSA
 - At surface vs. depth
 - Witnessed/unwitnessed
 - AGE, MI, drowning due to blackout/medical condition
- Blackout
 - Gas issue (too much, not enough, wrong gas), seizure
- Vertigo and other ENT symptoms
 - Vestibular DCS, inner ear BT (pure or combined with vestib DCS), alternobaric vertigo, Meniere's/BPPV
- Chest pain/SOB
 - Chokes, pneumothorax, immersion pulm edema, ACS/CHF
- Headache
 - CO2 toxicity, DCS (?type?), migraine, plain H/A

Initial Approach

- Approach
 - Onset
 - Evolution
 - Presentation
 - Gas burden dive profile
 - Evidence of barotrauma
- Mod High risk = Manage as DCI
- Low Risk consider other causes
 - 1) Non-DCI dysbaric (i.e. BT)
 - 2) Non-dysbaric diving-related (i.e. marine life)
 - 3) Non-diving-related CLASSICAL (ie. MI)

- Diver Hx
 - Dive Profile
 - Depth, time estimate of N2 stress
 - ?repet dives how many, when was last dive
 - Dive equipment & gas used
 - Mechanism of injury
 - When did problems start
 - Descent, at depth, ascent, at surface
 - What happened during dive
 - Uneventful; strong current; aborted; emergency ascent

Initial Actions Dysbaric Casualty

• ABCDE

- Vitals
- 100% Oxygen
 - Accelerate inert gas elimination & improve O₂ delivery to hypoxic tissue
 - BMV, demand valve, rebreather
- IV Fluids IL bolus, then titrate (~100-175ml/hr)
 - Avoid dextrose (can increase ICP)
 - PO fluids unlikely to benefit
 - Increase tissue perfusion = increase inert gas washout
- DDx

- Emergency (Red) immediate, life-saving
 - Severe sx, rapid onset <1hr, progressive, neuro deficits, clearly ill
- Urgent (Yellow) disability preventing
 - Pain only, stable or progressing, overall stable, without sx of severe DCS
- Timely (Green) elective
 - Unclear/ambiguous sx, long delay from when sx 1st appeared (not when 1st reported)

Time to Tx – DAN workshop 2004

• Consensus Statements

1. Mild s/sx = limb pain, constitutional sx, some cutaneous sensory changes, rash; where these manifestations are static or remitting, and associated objective neuro dysfx has been excluded by medical exam

2. Untreated mild s/sx due to DCI are unlikely to progress after 24hrs from end of diving (unless further deco or ascent to altitude)

3. Level B epi evidence indicates that a delay prior to recompression for a patient with mild DCI is unlikely to be associated with any worsening of longterm outcome 4. Some patients with mild s/sx after diving can be treated adequately without recompression. For those with DCI recovery may be slower in the absence of recompression.

5. Some divers with mild s/sx after diving may be evacuated by commercial airliner to obtain treatment after a surface interval of at least 24hrs, and this is unlikely to be associated with worsening outcomes

• NB Mild s/sx – need monitoring

General Approach RTD

- Impairment
 - Loss of use or derangement of body part/organ system or fx
- Disability
 - Inability to meet demand/need based on an impairment
- 5 key questions:
 - Diver or patient?
 - Disqualifying meds
 - Consider both med & indication
 - Ability to do job
 - Exercise tolerance, cognitive fx, roles (buddy, rescue diver, dive sup, boat driver, EOD disposal), stressors (pressure, gas toxicities, thermal, disorientation etc.)
 - Quantification of impairment
 - Immune function
 - Assessment of job ?tailored diving

- Key Considerations:
 - Dive safety (individual & team)
 - Job/mission completion
 - Conserve trained resources
- CAF RTD after DCI
 - Type I DCS completely resolved
 - No fly 3d, no diving 7d
 - Type II DCS completely resolved after 1 TT
 - No flying 7d, no diving 30d
 - Type II DCS residual sx or repeated tx
 - No fly 10d, no diving until reviewed by CDSM
 - AGE completely resolved after 1 TT
 - No fly x 7d, no diving until reviewed by CDSM
 - AGE residual sx or repeated tx
 - No fly x 10d, no diving until reviewed by CDSM

HBOT

HBOT

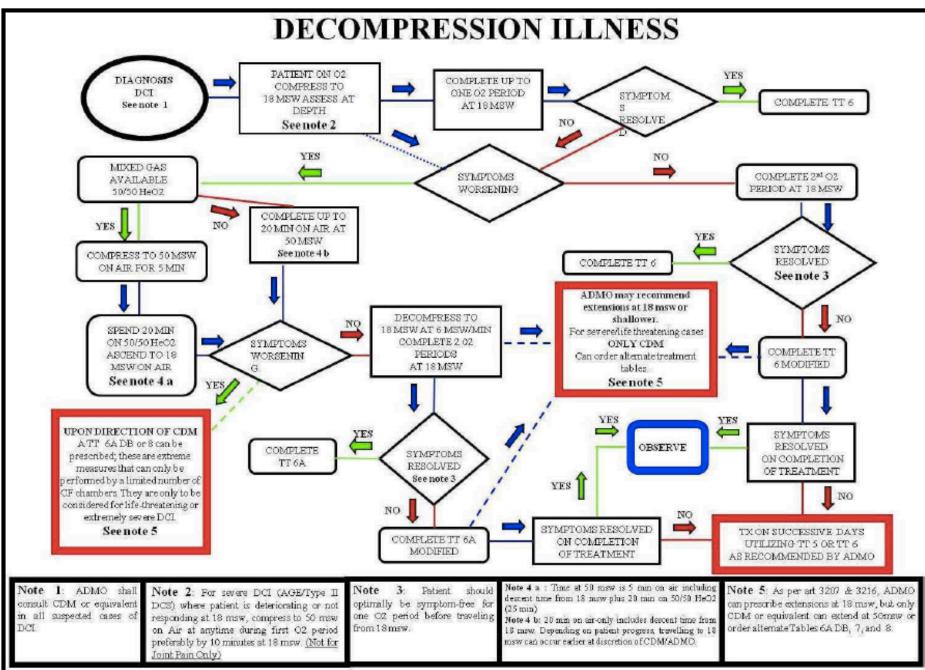
• UHMS Indications

- 1. Air or Gas Embolism
- 2. CO poisoning
- 3. Clostridial myositis and myonecrosis (Gas Gangrene)
- 4. Crush injury, compartment syndrome, other acute traumatic ischemias
- 5. DCS
- 6. Arterial insufficiencies
- 7. Severe anemia
- 8. Intracranial abscess
- 9. Necrotizing soft tissue infections
- 10. Osteomyelitis (refractory)
- 11. Delayed radiation injury (soft tissue, bony necrosis)
- 12. Compromised grafts and flaps
- 13. Acute thermal burn injury
- 14. Idiopathic sudden sensorineural hearing loss (new Oct 2011)

- CAF Treatment Tables
 - Limits due to OxTox (decreased with air breaks)
 - If TT stopped due to CNS OxTox, allow 15 mins after sx resolved, then resume schedule at point of interruption
 - Tx repeated until resolution or plateau
 - Contraindications almost all relative (depends on indication)
 - Largely same as diving
 - Other common treatment tables:
 - USN, Comex, Catalina, CO poisoning
 - Proprietary commercial tables

HBOT Mechanisms

- Bubble Compression (Boyle's Law)
- Hyperoxygenation (Henry's Law)
 - 10-15x increase in plasma O2
 - 2-4 x increase in O2 diffusion capacity from capillaries
- Gas Gradient support gas washout, prevent additional uptake of inert gas during HBOT
- Antimicrobial effect
 - Inhibit clostridial alpha toxin
 - Anaerobic bacteriostasis
 - enhance antibiotic activity,
 - improve PMN fx

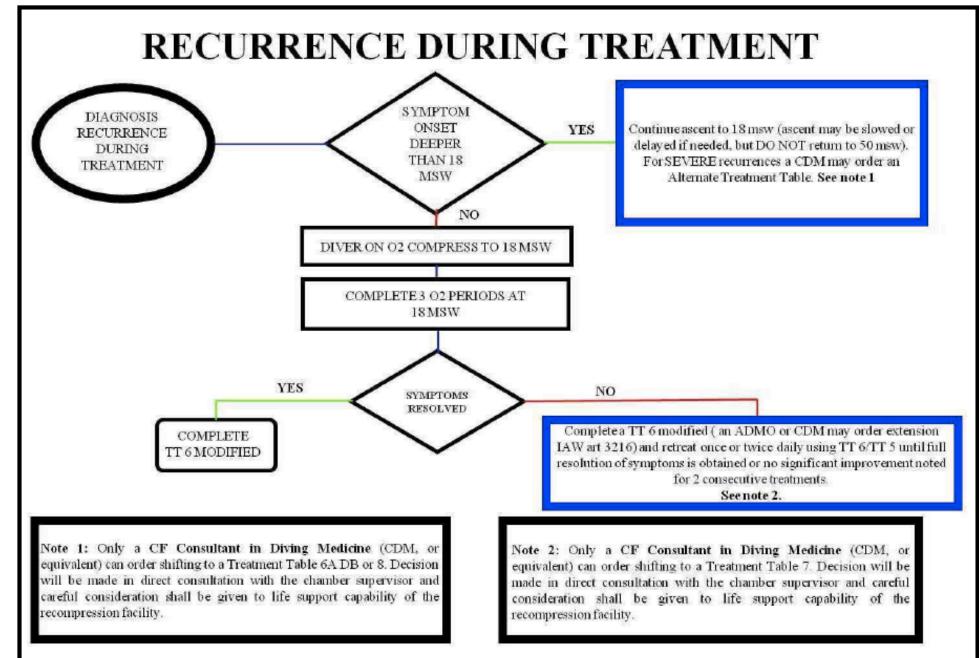
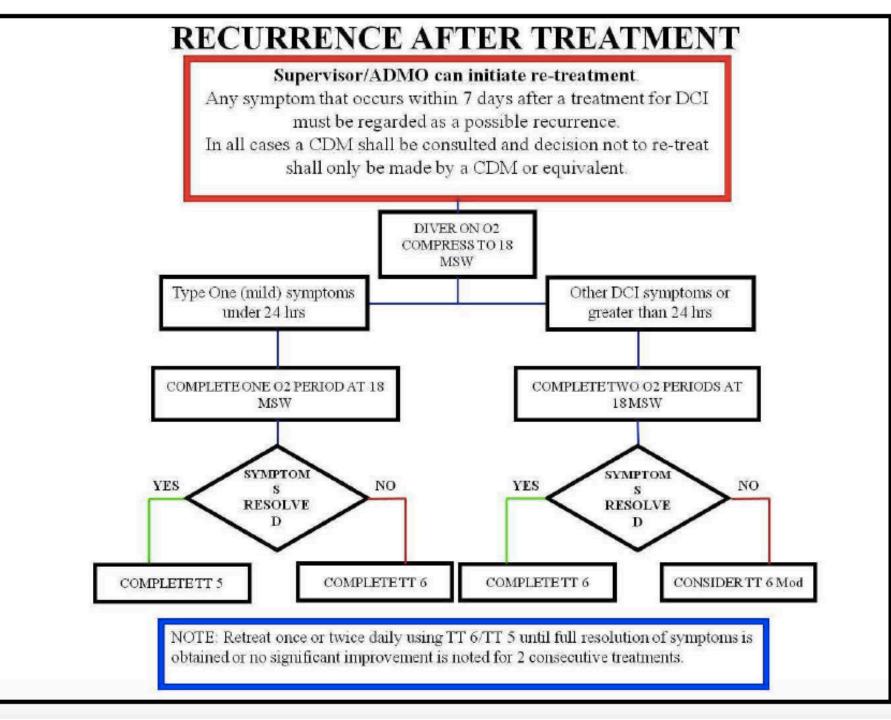

- Blunt ischemia-reperfusion injury
 - Attenuates PMB-endothelial interaction
 - Prevent lipid peroxidation
- Decrease edema
 - Vasoconstriction (while tissues remain hyper-oxygenated)
- Angiogenesis/Wound healing
 - Stimulate vasculogenic stem cell mobilization
 - Increase growth factor synthesis
 - Stim fibroblast proliferation
 - Angiogenesis, reversal of tissue hypoxia

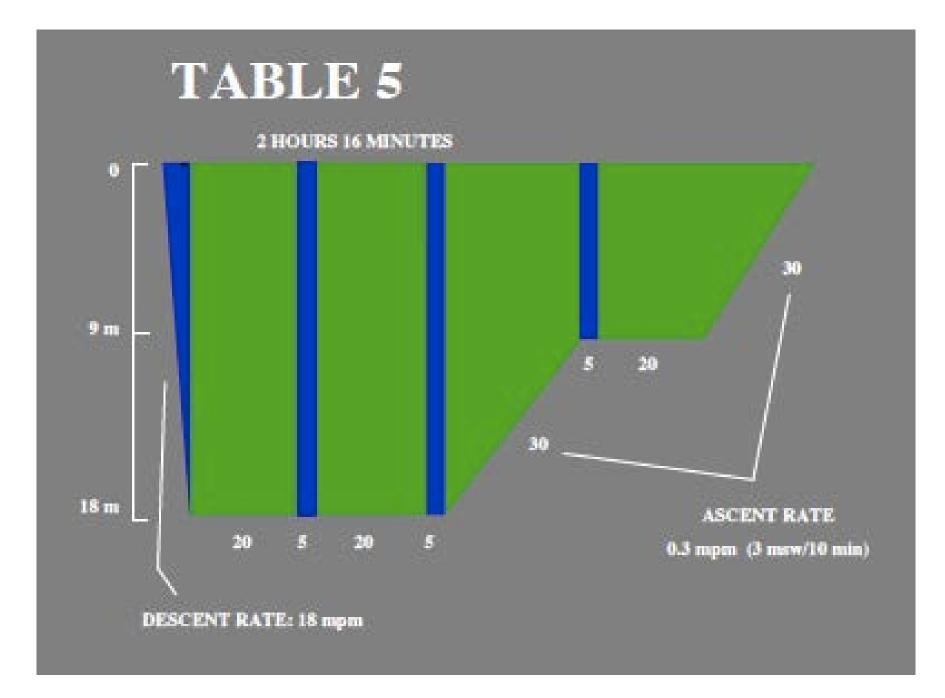
Adjuncts

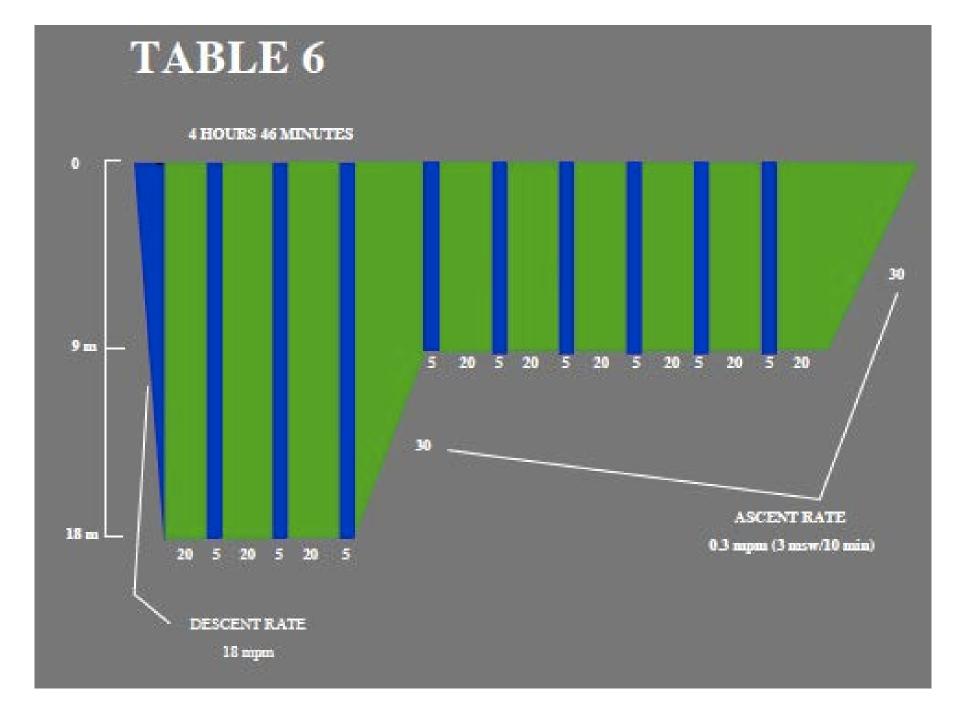
• NSAIDs

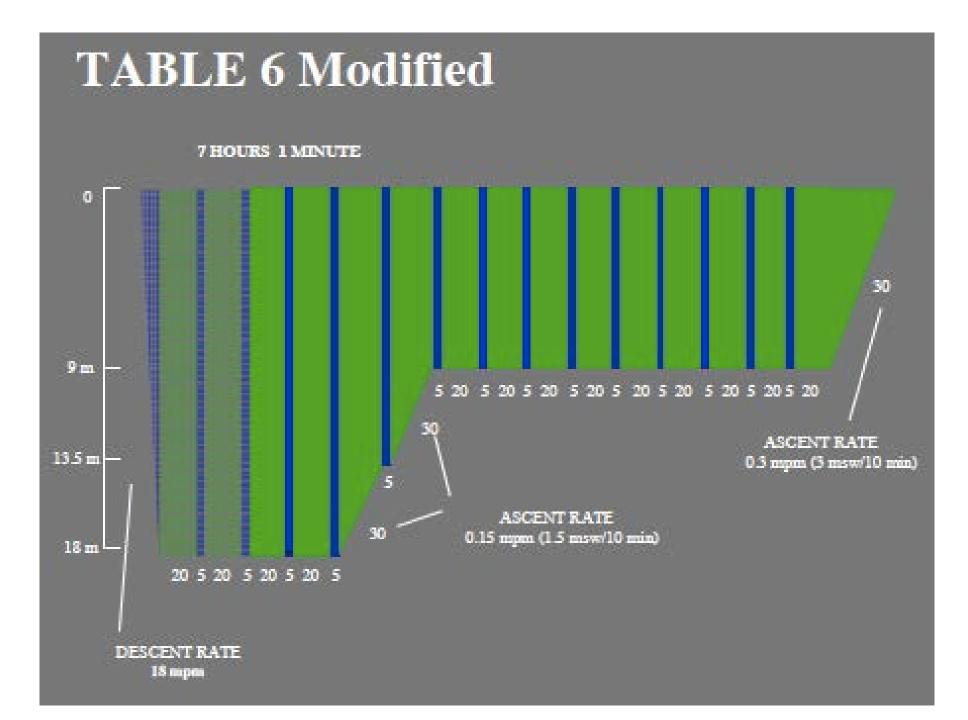
- No diff in final outcome, but with tenoxicam divers needed fewer TT
- NNT ~4-5
- Heliox
 - May decrease # of TT required
- Lidocaine may have neuroprotective effect
 - Insufficient evidence to support routine use
- Perfluorocarbons increased O₂ delivery, N₂ removal
 - Animal models only so far
- Not recommended: steroid, ASA, Heparin (unless DVT prophylaxis @24hrs)

- Other considerations
 - Hydration, food
 - Urinary catheter
 - DVT prophylaxis
 - Hospital admission
 - Specialists consults (i.e. neuro)

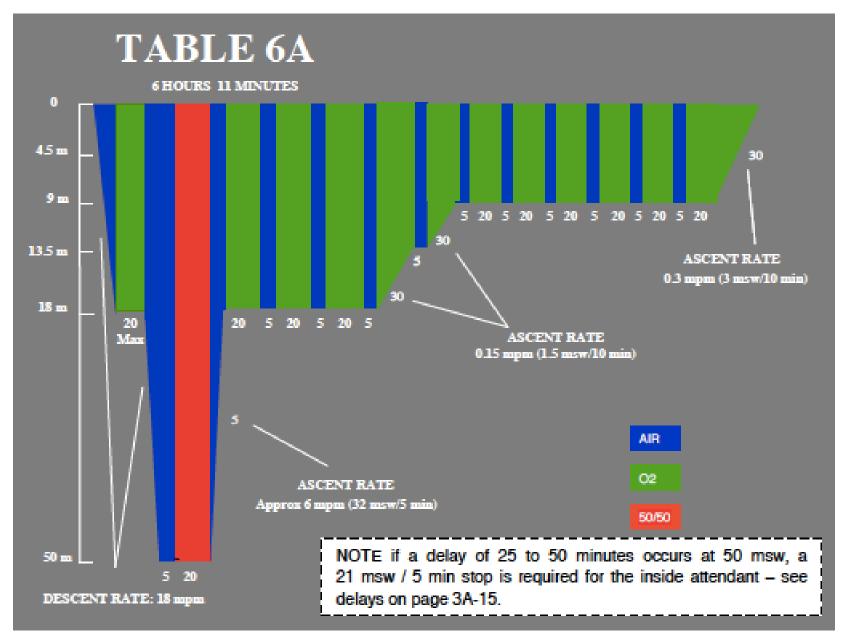



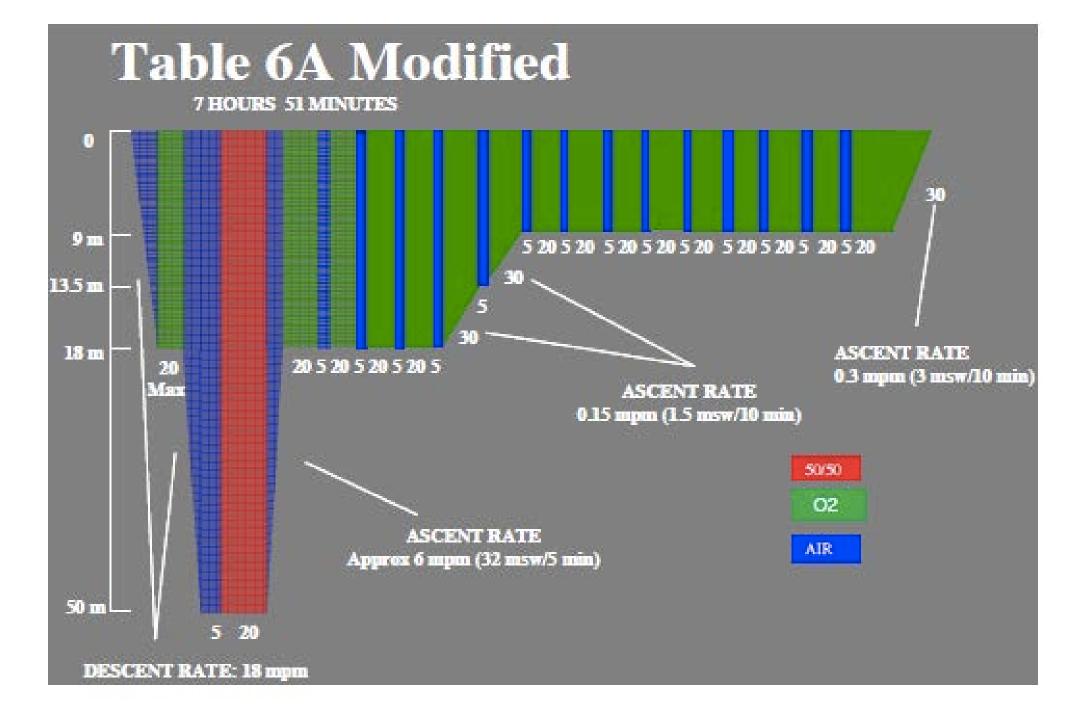

Figure 3-2-3 Recurrence During Treatment Summary

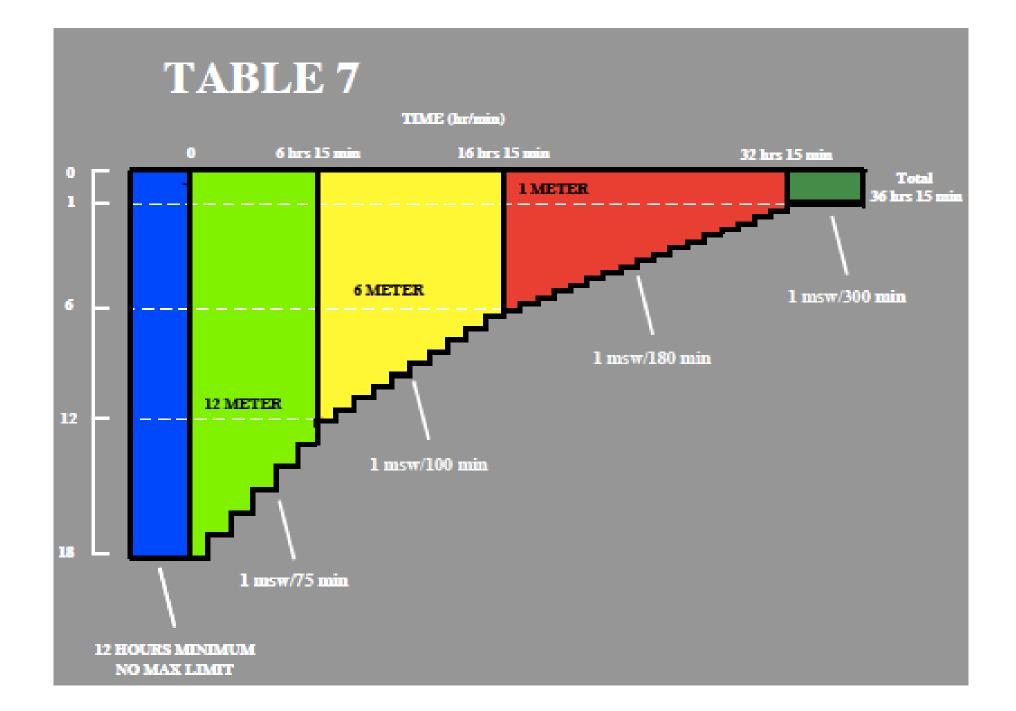

B-GG-380-000/FP-005

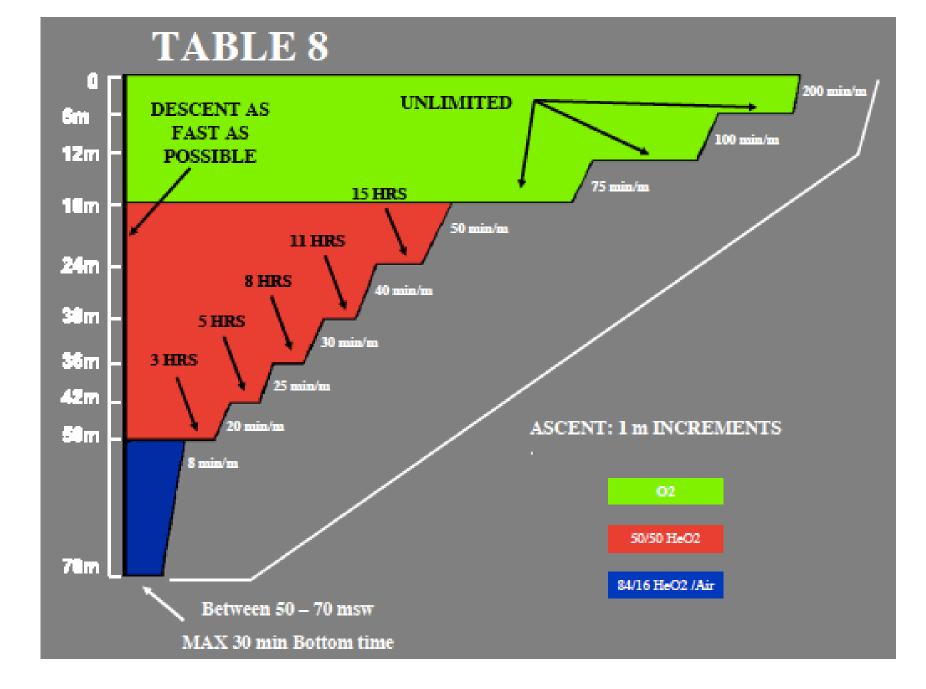


Treatment Table Summary


Table	Indications
5	Type 1 DCS only if sx completely resolved during transport to RCC Recurrence Type 1 Sx (complete resolved after 1x O₂ period at 18msw) Omitted-D, uncontrolled ascent/blow-up – for Asx if omitted D ≤30 mins)
6	DCS, AGE responding to initial 18msw RCC Omitted D, uncontrolled ascent/blow-up: Asx individual with ≥ 30 mins
6 Mod	Extension of TT6, if patient remains sx by end of 2 nd O ₂ period at 18msw
6A	Severe AGE/DCS deteriorating or not responding at 18msw, resolving @50msw
6A Mod	Extension of TT6A, if patient remains sx by end of 2 nd O ₂ period @18msw
7	Heroic measure, used in extreme cases
8	Deteriorating severe AGE/DCS sx @50msw, recurrence of severe AGE/DCS during deco from 50msw-18msw etc.







B-GG-380-000/FP-005

