
Physiologic Implications Underwater Breathing Apparatus

Physiologic Implications Underwater Breathing

- Increased CO₂ levels
 - CO₂ retention if breathing inadequate to eliminate CO₂ produced.
 - Common in all diving due to \uparrow WOB
 - Immersion effects
 - Gas density
 - Equipment effects
 - Exacerbated by exercise/work, panic, hyperventilation, dynamic airway compression
- Gas Density
 - increased depth = increased density (Gas law) = decreased flow (Poiseuille's law) = increased WOB

- Immersion Effects
 - P Δ feet to chest ~120cm H₂O, negative static lung load dev when lungs deeper than reg/counterlung
 - Fluid shift to central circulation
 - ↑cardiac afterload, ↑blood to lungs = ↓lung compliance, ↓ VC, ↑ airway resistance, diuresis
- Equipment Effects
 - All underwater breathing equipment increases breathing resistance
 - i.e. Demand valve, dead space in helmet/face masks/hoses
 - Movement of CO_2 from blood to lungs based on gradient/press Δ
 - Rebreathers if inhaling Co₂ = smaller
 Δ = less CO₂ ventilated

Dynamic Airway Compression (DAC)

- Normal Expiration gas flows out along airway because P1 >P2
 - P1 -> P2 declines more quickly with dense gas
- At some point along the tube, airway P = intrapleural P (P_{pl}) = equal pressure point (EPP)
 - Beyond this point, P along airway is less than P_{pl} = airway compression
- Catch 22
 - Harder you try to exhale,
 - higher the P_{Pl} = shift EPP to the left
 - \uparrow WOB which \uparrow CO₂
- Distal movement of EPP
 - Increased a/w resistance (asthma, gas density), reduced lung elastic recoil, negative static lung load