Gas Issues in Diving

Gas Issues

• TOO MUCH

• O₂, CO₂, inert gas narcosis, High Pressure Neurological Syndrome

• TOO LITTLE

- Hypoxia, hyperventilation
- WRONG GAS
 - CO poisoning, contaminants

CNS Ox Tox "VENTID-C"

- Vision changes (↓acuity, dazzle, lat movement, constricted fields)
- Ears (tinnitus, auditory hallucinations, music, bells, knocking)
- Nausea/vomiting
- Twitch (lips, cheek, eyelid, tremors...)
- Irritability, behaviour, mood changes (incl apprehension, apathy, euphoria)
- Dizzy
- Convulsions
 - Also pallor, sweaty, palpitations, brady, tachy, panting, grunting, unpleasant gustatory/ olfactory sensations, hiccups

- Risk Factors
 - Exercise
 - Hyper/hypothermia
 - Hypoventilation, hypercapnia
 - Immersion
 - Metabolic activity, blood flow to brain
 - Hypoglycemia (DM)
 - Seizure D?O, +/- meds that lower sx threshold
 - VitE deficiency
 - Pseudoephedrine, amphetamines, ASA, acetazolamide
 - Spherocytosis, hypercortisolism

CNS OxTox

- No consistent pre-convulsion warning sx
 - Often not preceded by other sx
- O₂ convulsions **not** inherently harmful
 - No pathologic changes in human brain, no evidence of clinical sequelae
 - No apparent predisposition to future sz disorder
 - Harm based on context (seizure underwater = drowning)
- Very high intra & inter-individual variation in susceptibility
 - ?increased risk with drugs that lower sz threshold (not much evidence)

- Tx
 - Remove O₂
 - Stop travel
 - · Protect from injuries if seizing
 - Check DDx (don't forget hypoglycemia)
 - Keep patient off O₂ for 15 mins after all sx are gone
 - Ignore treatment time lost and resume table where last interrupted
 - Don't forget to compensate for extra time for chamber attendants
- Preventive Measures
 - Air breaks
 - Clinical HBOT setting (rarely used)
 - Glutathione
 - Lithium
 - GABA agonists

CNS OxTox

- No consistent pre-convulsion warning sx
 - Often not preceded by other sx
- O₂ convulsions **not** inherently harmful
 - No pathologic changes in human brain, no evidence of clinical sequelae
 - No apparent predisposition to future sz disorder
 - Harm based on context (seizure underwater = drowning)
- Very high intra & inter-individual variation in susceptibility
 - ?increased risk with drugs that lower sz threshold (not much evidence)

- Tx
 - Remove O₂
 - Protect from injuries if seizing
 - Check DDx (don't forget hypoglycemia)
 - Keep patient off O₂ for 15 mins *after all sx are gone*
 - Ignore treatment time lost and resume table where last interrupted
 - Don't forget to compensate for extra time for chamber attendants
- Preventive Measures
 - Air breaks
 - Clinical HBOT setting (rarely used)
 - Glutathione
 - Lithium
 - GABA agonists

Pulmonary Oxygen Toxicity

- Cumulative dose = fx of exposure time, ATA, and FiO2
- Acute Δ with FiO2 > 0.8 ATA
- Chronic Δ with FiO2 > 0.5 ATA
- Typically insidious mild substernal irritation, chest tightness -> 个cough -> constant burning exacerbated by inspiration -> dyspnea (exertion or rest)
 - ~12-16 hrs @ 1 ATA, ~3-6 hrs @ 2.0 ATA
- CXR usually N, +/- patchy infiltrates
- Mechanical fx impaired earlier than gas exchange (CO diffusing capabilities)
 - No change FEV1
 - ↓FVC
 - 2%, asx, completely reversible over hrs
 - 10% = mild sx, reversible over several days
 - 20% = mod sx, probably reversible over weeks, acceptable for a TT
 - \downarrow Diffusion capacity, FEF 25-75, V/Q defect

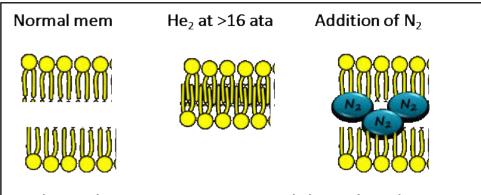
- Acute Exudative (reversible)
 - Interstitial and alveolar edema, hemorrhage, destruction of pulm capillary endothelium, loss of type I alveolar cells (surfactant), inflam. cell infiltrates
- Acute Proliferative (non-reversible)
 - Type II alveolar cells replace damaged type I (blood-air barrier thickens), fibroblast infiltration, increased alveolar-capillary distance, ↓alveolar air vol, ↑collagen content
- Chronic
 - Progressive pulmonary fibrosis, similar to ARDS
- Preventions:
 - Air breaks
 - Unit Pulmonary Toxicity Dose (UPTD)
 - 1 UPT = pulm poisoning produced by 100% O2 x 1 min at 1 ATA
 - HBOT Max 1440 UPTD/24hrs (TT6 = 750 UPTDs)

Nitrogen Narcosis "Rapture of the deep"

- Reversible depression of neuronal excitability due to inert gas
 - Potency Xe >Kr > Ar > N > H > Ne > He
 - ?Interfere with transmission of EP across synaptic gap
 - Meyer-Overton theory: 个solubility = 个narcotic effect
- Immediate onset at depth, stable after few mins at depth, rapid resolution upon ascent
 - Potentiated by ↑CO2 levels
 - No true acclimatization, divers may dev short term subjective tolerance, NO objective tolerance
- RFs
 - Depth, gas mix, anxiety, task loading, cold, fatigue, exercise, EtOH, sedatives, 个CO2

- S/Sx
 - ++Inter/intra-variability (~60-120ft onset)
 - ↓performance mental/manual work (higher fx affected most)
 - Dizzy, euphoria, uncontrolled laughter
 - Overconfidence, overly talkative
 - Memory loss/post-dive amnesia
 - Perceptual narrowing (fixation)
 - Impaired sensory functioning
 - LOC >100msw
- Prevention
 - Depth <30msw, plan dive ahead & practice tasks
 - If affected decrease depth
 - Heliox

CO₂ Toxicity


- Inadequate ventilation
 - Helmet diving, hyperbaric chamber
 - Alveolar hypoventilation
- Higher inspired CO2 = failure of CO₂ scrubbers in rebreather systems
- CO₂ retention (increased WOB underwater)
 - Increased CO₂ levels unpredictable, even in normal healthy divers
- Inadequate pulmonary ventilation
 - Increased density of gas
 - Deliberate hypoventilation or 'skipbreathing' – NEVER skip breath, esp. at high PP

- S/Sx
 - H/A, flushing, sweating
 - Dizzy
 - Dyspnea
 - Decreased cognition, disorientation
 - LOC/convulsions
 - Makes everything else worse (NN, OxTox)
- Tx
 - End dive
 - Fresh air, +/- O₂

High Pressure Neurological Syndrome (HPNS)

- General excitation of brain
 - Opposite to narcosis
- Occurs in very deep diving >16 ATA
 - Usually Heliox mixtures at this depth
- Affected by rate of compression
 - Rapid rate = increased severity at shallower depth
- S/Sx
 - Marked tremor hands/arms/whole body, dizzy, anorexia, nausea, vomiting
 - Fatigue, somnolence
 - Can progress to myoclonic jerks -> clonic seizures

- Prevention
 - Diver selection
 - ↓compression rate, long stages/holds (allow adaptation)
 - Use of N₂ (or other narcotic) in trimix

- Physical pressure compresses bilayer (He₂ lets you get to that pressure) -> increased brain excitation
- Addition of N₂ = swelling -> decrease brain excitation
- Trimix = balance between compression & swelling

Нурохіа

- Same sx as on the surface
- Important to know onset for rebreathers
 - Open circuit
 - Hypoxia at depth almost never O₂ issue, gen CO₂ issue
 - Hypoxia at surface almost always O₂ issue
 - Closed circuit
 - Hypoxia sensor failure
- Prevention
 - Maintain gear & checks
 - Don't run out of breathing gas

- Shallow-Water Blackout
 - Breath-hold diving
 - Remember CO₂ produces drive to breathe
 - Hyperventilation reduces CO₂ levels below normal levels
 - O₂ levels may fall to a level causing LOC before CO₂ increases to breakpoint trigger for breathing
 - LOC underwater is never a good thing...

CO Toxicity

- Typically contaminated air from improperly directed compression engine exhaust
- Pathophys
 - CO relative affinity for Hb 250x greater than O2
 - ↓O2 carrying capacity, ↑unbound Hb = left shift = ↓tissue/intracellular O2
 - Disturbs mitochondrial e- transport, 个NO radicals, lipid peroxidation in brain
 - Cerebral vessels dilate, ↑coronary blood flow with ↓central resp -> cerebral hypoxia & cardiac arrhythmias
 - Acute mortality often due to ventricular arrhythmias due to hypoxic stress, myocardial impairment

- S/Sx
 - Headache, N/V, dizzy, weakness, vision changes, disorientation, ↓LOC, auditory dysfunction, cardiac arrhythmias, skeletal muscle necrosis -> ARF, pulm edema
 - Concomitant smoke inhalation sx
 - Cherry red skin colour rare, very late
- CO best assessed by blood carboxyhemoglobin (COHb)
 - Mortality/morbidity not correlated with COHb level
 - Pulse oximetry overestimate arterial O2
- Tx
 - ABCs, preserve airway
 - Ventilation, oxygenation
 - HBOT hastens CO dissociation beyond rate achievable by surface 100% O2