Diving Physics

Physics

- Air $\sim 78 \% \mathrm{~N}_{2}, \sim 21 \% \mathrm{O}_{2}, \sim 0.03 \%$ CO_{2}

Conversions

- Hydrostatic/ gauge pressure (P) = ~1 atm for every $10 \mathrm{msw} / 33 \mathrm{fsw}$
- Modification needed if diving at altitude
- Atmospheric P (1 atm at 0msw)
- Absolute $P=$ gauge $P+$ atmospheric P
- Water virtually incompressible density remains ~same regardless depth/pressure
- Density salt water 1027 kg/m³
- Density fresh water $1000 \mathrm{~kg} / \mathrm{m}^{3}$
- Calculate depth from gauge pressure you divide press by 0.1027 (salt water) or 0.10000 (fresh water)
- $1 \mathrm{bar}=101 \mathrm{KPa}=0.987 \mathrm{~atm}=$ ~14.5 psi
- $10 \mathrm{msw}=1 \mathrm{bar}=0.987 \mathrm{~atm}$
- $33.07 \mathrm{fsw}=1 \mathrm{~atm}=1.013 \mathrm{bar}$
- Absolute $P(a t a)=$ gauge $P+1$ atm
- ${ }^{\circ} \mathrm{F}=\left(9 / 5 x^{\circ} \mathrm{C}\right)+32$
- ${ }^{\circ} \mathrm{C}=5 / 9\left({ }^{\circ} \mathrm{F}-32\right)$
- ${ }^{\circ} \mathrm{R}$ (rankine) $={ }^{\circ} \mathrm{F}+460 * *$ absolute
- $\mathrm{K}($ Kelvin $)={ }^{\circ} \mathrm{C}+273^{* *}$ absolute

Laws \& Principles

- All calculations require absolute units (K, ${ }^{\circ} \mathrm{R}, \mathrm{ATA}$)
- Charles' Law $\mathrm{V}_{1} / \mathrm{T}_{1}=\mathrm{V}_{2} / \mathrm{T}_{2}$
- Guy-Lussac's Law $P_{1} / T_{1}=P_{2} / T_{2}$
- Boyle's Law $\mathrm{P}_{1} \mathrm{~V}_{1}=\mathrm{P}_{2} \mathrm{~V}_{2}$
- General Gas Law $\left(\mathrm{P}_{1} \mathrm{~V}_{1}\right) / \mathrm{T}_{1}=\left(\mathrm{P}_{2} \mathrm{~V}_{2}\right) / \mathrm{T}_{2}$
- Archimedes' Principle
- Any object immersed in liquid is buoyed up by a force equal to weight of the fluid displaced by the object
- Daltons' Law $\mathrm{P}_{\text {(total) }}=\mathrm{P}_{1}+\mathrm{P}_{2}+\ldots+\mathrm{P}_{\mathrm{n}}$
- The total pressure exerted by a mixture of gases is the sum of the pressures that would be exerted by each gas if it alone were present and occupied the total volume
- Henry's Law:
- The amount of gas that will dissolve in a liquid is almost directly proportional to the partial press of that gas, \& inversely proportional to absolute temp
- Partial Pressure (pp) - pressure contributed by a single gas in a mix
- To determine the partial pressure of a gas at any depth, we multiply the press (ata) x \%of that gas Henry's Law
- Gas molecules enter liquid - add to gas tension (=partial press gas in liquid)
- Pressure gradient = Δ between gas tension in the liquid and gas partial press outside liquid
- High gradient (low tension high PP) = high rate absorption of gas into liquid

