Decompression Illness

DCI

- Decompression illness (DCI) includes DCS and AGE
- ~1-10/10,000 dives
 - Higher in cold water, deep; lower in recreational warm water diving (1-4/10k)
- Traditional/Golding Classification
 - Type I (MSK, skin, lymph, fatigue)
 - Type II (neuro, cardio-resp, ENT, shock)
 - AGE
- Descriptive/Francis Smith Class
 - Evolution (spontaneous recovery, static, relapsing)
 - Progressive (increasing #, severity of s/sx)
 - Organ System
 - Neuro, cardio-pulm, MSK, skin, lymph, ENT
 - Time of onset (before or after surfacing)
 - Gas burden
 - Low (conservative within NoD), Med (D Dive), High (violation dive table)
 - Evidence of barotrauma

- Diagnosis generally hx, estimation of likelihood
 - Sx depend on location of insult
 - <24 hrs possible, >24 hrs unlikely, >36 hrs very unlikely, >48 hrs almost impossible unless altitude change
 - There is no pathognomonic test for DCI
- Tx
 - 100% Surface O2
 - IVF
 - Evacuation considerations
 - Airway, foley, pressurized cabin or as low as possible
 - HBOT

DCS Pathophysiology

- Henry's Law amount of inert gas absorbed by blood/tissue increased at depth
- Boyle's Law $P_1V_1 = P_2V_2$
- Bubble effects
 - Intravascular embolism, vasospasm, ischemia, transbolism, venous stasis, hemorrhage, blood-bubble interactions, mechanical stripping of endothelial cells
 - Extravascular -tissue disruption, tearing, hemorrhage, localized "compartment syndrome" – ischemia, stasis
 - Typically peri-alveolar capillary network 'traps' venous gas – but can be overcome (# bubbles, repet diving)

- Inflammatory & thrombogenic processes
 - Association with oxidative stress, microparticles
 - Bubbles biologically active form plasma-protein coat activating WBC, plts, fibrin web
 - "Thick skin" stabilizes bubble, decreases diffusion of inert gas out of bubble
 - Recurrence of sx likely due to secondary rxn vice initial bubble

Cutaneous, PNS

- Cutaneous angio-lymphangiologic DCI
 - Erythema, lymphedema
 - Cutis Marmorata
 - Venous congestion, infl, WBC activation, and endothelial damage
 - Associated with pulmonary and neuro DCI, thus requires careful monitoring

Cutaneous diffusion

- 'Diver's Lice': erythematous rash, typically with dry chamber dives or dry suits
 - ?inert gas enters skin directly, causing dermal bubbles and histamine release on decompression
 - Benign, no RCC required
 - Tx if dx in doubt

- PNS
 - All that tingles is not the bends!!!
 - Don't forget about non-dysbaric neuropraxias: ulnar, median, inferior brachial plexus, lateral cutaneous femoral and sciatic
 - Tight wet suit, weight belts, heavy equipment, BCD straps, sitting on side of boat etc.

MSK

- Most common presentation of DCS
- "Bends" typically only affects long bones of appendicular skeleton (not axial skeleton)
 - Adult long bones contain fatty marrow cavity ?reservoir for inert gas
- Pain mechanisms
 - Intra-articular
 - "Niggles"/ marginal DCS if mild sx that begin to resolve 10min after onset
 - Peri-articular (within tendon, muscle); "niggles" if brief
 - Medullar/sinusoids gas expansion within medullary cavity, fatty marrow and bone sinusoids
 - Referred pain injury to nerve roots assoc with joint, generalized release of infl modulators

- MSK speculation
 - Unk if any long-term effects for #2-3 if no RCC (if this is DCS)

	Pain	Potential Cause
1. Localized sharp	Affected by movement	Tendon/muscle injury (this is what moves)
2. Localized sharp	Unaffected by movement "diver rubs at it"	Local infl; (?DCS)
3. Poorly localized, deep boring pain	Affected by movement	Intra-articular, joint capsule tension; (?DCS)
4. Poorly localized, deep boring pain	Unaffected by movement	Bone medulla injury (<mark>DCS!</mark>)

Spinal Cord DCS Pathophys

- Spinal cord white matter in a C-shaped area around the spinal cord grey matter
 - Watershed zone between ant and post spinal cord circulation – susceptible to both inert gas accumulation and bubble-related ischemia
 - Cervical and lumbar enlargements particularly vulnerable
- Presentation is likely combo of interacting compressive/ ischemic mechanisms
 - Gas embolism
 - But blood flow favours embolization to the brain, and experimental spinal cord embolism generally produces grey matter pathology vs. white matter
 - Venous infarction bubble accumulation in epidural venous plexus
 - Can't explain ultra-short-latency cases
 - Usually produces grey matter lesions, not white like DCI

- Autochthonous bubbles spontaneous bubble formation in spinal cord white matter
 - Direct axon destruction with 2° effects (hemm, infl, stretch/compress)
 - Explains rapid onset, lesions in white matter
 - But how are these small isolated lesions able to produce such significant sx?
- Hemorrhage and inflammation
 - Observed in same areas where autochthonous bubble injuries were seen
 - Could explain why some cases of rapid onset spinal cord DCS resistant to recompression

IE DCS Pathophys Theories

1. Counter diffusion

- Conditions where inert gas in middle ear differs from gas in the breathing mixture (gas switch)
 - -> Diffusion through round/oval window could result in accumulation of inert gas with bubbling
- Blood supply to inner ear isn't uniform (stria vascularis supplies endolymph directly, then diffuses to perilymph)
 - Endolymph could rapidly take up new inert gas before perilymph had time to eliminate former inert gas -> bubbles form in endolymph

2. Gas induced osmosis

 Similar to #1, inert gas accumulation in endolymph induces osmotic fluid shift toward endolymph -> hydrops endolymphaticus (similar to Meniere's)

- 3. Explosive/hemorrhagic
 - Gas accumulation in temporal bone osteoclast pockets that explosively rupture into inner ear during decompression
 - Plausible for deep mixed diving, blow-up from saturation
- 4. Embolism
 - Inner ear blood supply is end-arterial, thus would be prone to embolic or vascular injury

AGE

Subset of DCI

- ~1/5000 USN experimental dives
 - Low among mil working divers on standard tables, $^{\rm \sim 1/10k}$
- 2nd most common cause diving fatalities
 - Australian dive fatalities 1972-2005, AGE cause in 25% of cases (2nd most common)
- Mechanisms
 - PBT
 - Intracardiac shunt ("safe dives make bubbles")
 - Trans-pulmonary shunt
 - A-V or bronchopulmonary fistula (rare)
 - In-situ bubble formation (not likely)
 - 50% diving cases no identified cause, most neuropath info from iatrogenic CAGE
- DDx: Neuro DCS, CVA, carotid artery dissection, cardiac, other neuro process
- RFs same as POS

- S/Sx
 - Rapid onset <10 mins, rapid progression
 - Neuro sx occurring immediately after surfacing (esp. shallow, short dive) should be considered AGE until proven otherwise
 - +/- POS Sx
 - Neuro deficits based on bubble location (LOC, confusion, paresis, sensory loss, apnea, aphasia, visual loss (field >acuity), vertigo, ataxia, seizure, isolated personality or cognitive change etc.)
 - +/- neuropsychiatric, EEG changes
 - 5% dead on the spot –cardiac airlock
 - Systemic hypertension and bradycardia
 - Liebermeister's sign (sharply demarcated pallor on one half of tongue)
 - CK increased with peak 12hrs post onset
 - Correlates with severity, outcome (<1000 likely full resolution)
 - MR head: nothing -> focal or multifocal ischemia -> edema

AGE

• Tx - ABCs

- Supine, recovery position if LOC or airway not controlled
- 100% O2, euvolemia with IVF (RL)
- +/- ETT (low press/volume)
- Lidocaine (neuroprotective) 1mg/kg slow IV bolus, then 1-4mg/min (*controversial, may lower sz threshold)
- IV Benzo for seizures, agitation
- Chest tube if concurrent pneumo
- HBOT TT6/TT6A or Comex 30
 - ?Helium benefit after CVA (Comex 30 on 50/50)
 - Tx until plateau (h/a not indication for re-tx)
- Medevac ASAP pressurized aircraft to 1 ATA, or fly as low as safely possible

- Complications
 - Relapse seen in ~30% as late as 68hrs
 - Edema, re-embolization, ischemia reperfusion, endothelial damage,
 - Concurrent DCS can be resistant to Tx
 - Drowning
- Investigations
 - Carotid Doppler, contrast echo, CXR, CT chest, MRI brain (residual damage), PFTs
- Prognosis/RTD
 - Most have good outcome w/ resolution if prompt tx
 - R/O predisposing factors
 - ? Risk of recurrence if no RF identified
 - Unknown if 2nd occurrence means worse outcome than 1st
 - AUMB decision RTD
 - Any residual sx unfit dive
 - Asx after HBOT case-by case